【題目】已知{an}是一個(gè)等差數(shù)列且a2+a8=﹣4,a6=2

1)求{an}的通項(xiàng)公式;

2)求{an}的前n項(xiàng)和Sn的最小值.

【答案】1an=4n﹣222當(dāng)n=5時(shí),Sn取得最小值,=﹣50

【解析】

試題分析:1)設(shè)等差數(shù)列{an}的公差為d,由a2+a8=﹣4,a6=2,利用通項(xiàng)公式可得,解得即可.

2)令an≥0,即4n﹣22≥0,解得n≥6,可知當(dāng)n=5時(shí),Sn取得最小值,利用前n項(xiàng)和公式即可得出.

解:(1)設(shè)等差數(shù)列{an}的公差為d

a2+a8=﹣4,a6=2,,解得,

an=a1+n﹣1d=﹣18+4n﹣1=4n﹣22

2)令an≥0,即4n﹣22≥0,解得n≥6,

可知當(dāng)n=5時(shí),Sn取得最小值,=﹣50

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是直線上任意一點(diǎn),過,線段的垂直平分線交于點(diǎn).

(Ⅰ)求點(diǎn)的軌跡對(duì)應(yīng)的方程;

(Ⅱ)過點(diǎn)的直線與點(diǎn)的軌跡相交于兩點(diǎn),( 點(diǎn)在軸上方),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,且,求的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線共焦點(diǎn),拋物線上的點(diǎn)My軸的距離等于,且橢圓與拋物線的交點(diǎn)Q滿足

(I)求拋物線的方程和橢圓的方程;

(II)過拋物線上的點(diǎn)作拋物線的切線交橢圓于、 兩點(diǎn),設(shè)線段AB的中點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數(shù);又定義行列式=a1a4﹣a2a3; 函數(shù)g(θ)=(其中0≤θ≤).
(1)證明:函數(shù)f(x)在(0,+∞)上也是增函數(shù);
(2)若函數(shù)g(θ)的最大值為4,求m的值;
(3)若記集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤ , f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD的頂點(diǎn)P在底面ABCD上的投影恰好是A,其正視圖與側(cè)視圖都是腰長(zhǎng)為a的等腰直角三角形.則在四棱錐P﹣ABCD的任意兩個(gè)頂點(diǎn)的連線中,互相垂直的異面直線共有 對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,﹣),(0,)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與C交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)若 , 求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別求適合下列條件的標(biāo)準(zhǔn)方程:

1)實(shí)軸長(zhǎng)為12,離心率為,焦點(diǎn)在x軸上的橢圓;

2)頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).當(dāng)x>0時(shí),f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若f(1)= ,試求f(x)在區(qū)間[﹣2,6]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,.

1求數(shù)列的通項(xiàng)公式;

2設(shè),,記數(shù)列的前項(xiàng)和.若對(duì), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案