17.函數(shù)f(x)=x2+1,若f(f(x0))=2,則x0=±1.

分析 直接利用函數(shù)的解析式,列出方程求解即可.

解答 解:函數(shù)f(x)=x2+1,若f(f(x0))=2,
可得(f(x0))2+1=2,
可得f(x0)=±1,
x02+1=±1,解得x0=±1.
故答案為:±1.

點評 本題考查函數(shù)的零點與方程根的關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(1+$\sqrt{3}$tanx)•cos2x,
(Ⅰ)當x∈[$\frac{π}{6}$,$\frac{π}{2}$)時,求函數(shù)f(x)的取值范圍;
(Ⅱ)若在△ABC中,AC=2,BC=2$\sqrt{3}$,f($\frac{A}{2}$)=$\frac{3}{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.下列命題中,判斷條件p是條件q的什么條件:
(1)p:|x|=|y|,q:x=y;
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四邊形的對角線互相平分,q:四邊形是矩形;
(4)p:p且q是真命題,q:非p為假命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥CD,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)求證:B1C1⊥CE
(2)求點C到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知矩形ABCD所在平面與等腰直角三角形BEC所在平面互相垂直,BE⊥EC,AB=BE,M為線段AE的中點.
(Ⅰ) 證明:BM⊥平面AEC;
(Ⅱ) 求MC與平面DEC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.正六棱錐的底面周長為6,高為$\sqrt{3}$,那么它的側(cè)棱長是2,斜高是$\frac{\sqrt{15}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,在(-1,1)內(nèi)有零點且單調(diào)遞增的是(  )
A.y=log2(x+2)B.y=2x-1C.y=x2-$\frac{1}{2}$D.y=-x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.左、右焦點分別為F1、F2的橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與焦點為F的拋物線C2:x2=2y相交于A、B兩點,若四邊形ABF1F2為矩形,且△ABF的周長為3+2$\sqrt{2}$.
(1)求橢圓C1的方程;
(2)過橢圓C1上一動點P(不在x軸上)作圓O:x2+y2=1的兩條切線PC、PD,切點分別為C、D,直線CD與橢圓C1交于E、G兩點,O為坐標原點,求△OEG的面積S△OEG的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.數(shù)列{an}中,an=$\frac{4n-π}{2n-11}$,則該數(shù)列最大項是( 。
A.a1B.a5C.a6D.a7

查看答案和解析>>

同步練習(xí)冊答案