精英家教網 > 高中數學 > 題目詳情

【題目】是等差數列的前項和,已知 , .

1)求

2若數列求數列的前項和.

【答案】(1)18;(2)

【解析】試題分析:(1)根據等差數列滿足, ,列出關于首項公差的方程組,解方程組可得的值,根據等差數列的求和公式可得遞的值;(2)由(1)知,從而可得,利用裂項相消法求解即可.

試題解析:(I)設數列的公差為,則

,

解得,

所以.

(也可利用等差數列的性質解答)

(II)由(I)知

,

【方法點晴】本題主要考查等差數列的通項與求和公式,以及裂項相消法求數列的和,屬于中檔題. 裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,常見的裂項技巧:(1) ;(2 3;(4 ;此外,需注意裂項之后相消的過程中容易出現丟項或多項的問題,導致計算結果錯誤.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 底面,底面是直角梯形, , , , 的中點.

1)求證:平面平面;

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數分別記為

)求滿足的概率;

)設三條線段的長分別為5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為, .

1)求數列的通項公式;

2)令,設數列的前項和為;

3)令恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設為實數,函數, .

1)求的單調區(qū)間與極值;

2)求證:當時, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 分別為橢圓 的左、右焦點,點在橢圓上.

(Ⅰ)求的最小值;

(Ⅱ)設直線的斜率為,直線與橢圓交于, 兩點,若點在第一象限,且,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列五個命題中:
①函數y=loga(2x﹣1)+2015(a>0且a≠1)的圖象過定點(1,2015);
②若定義域為R函數f(x)滿足:對任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,則f(x)是減函數;
③f(x+1)=x2﹣1,則f(x)=x2﹣2x;
④若函數f(x)=是奇函數,則實數a=﹣1;
⑤若a=(c>0,c≠1),則實數a=3.
其中正確的命題是 .(填上相應的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系.若直線的極坐標方程為,曲線的極坐標方程為,將曲線上所有點的橫坐標縮短為原來的一半,縱坐標不變,然后再向右平移一個單位得到曲線

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)已知直線與曲線交于兩點,點,求的值.

查看答案和解析>>

同步練習冊答案