9.已知sinα=-$\frac{1}{3}$,且α∈(-$\frac{π}{2}$,$\frac{π}{2}}$),則tanα=( 。
A.$\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$±\frac{{\sqrt{2}}}{4}$D.$-\frac{{\sqrt{2}}}{2}$

分析 由sinα的值及α的范圍,利用同角三角函數(shù)間的基本關(guān)系求出cosα的值,即可確定出tanα的值.

解答 解:∵sinα=-$\frac{1}{3}$,且α∈(-$\frac{π}{2}$,$\frac{π}{2}}$),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{2}}{3}$,
則tanα=-$\frac{\frac{1}{3}}{\frac{2\sqrt{2}}{3}}$=-$\frac{\sqrt{2}}{4}$,
故選:B.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)間基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(Ⅰ)求a、b的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f1(x)=sinx+cosx,且f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x),…(n∈N*,n≥2),則f1($\frac{π}{4}$)+f2($\frac{π}{4}$)+…+f2015($\frac{π}{4}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=ln(x+a)-$\frac{1}{2}$ax2,a∈R,求f(x)單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+…+C${\;}_{n}^{2}$=C${\;}_{8}^{3}$(n∈N*).
(1)求n的值;
(2)求二項(xiàng)式($\sqrt{x}$-$\frac{2}{\root{3}{x}}$)n展開(kāi)式的一次項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.?dāng)?shù)列{an}中,a1=1,an+an+1=($\frac{1}{4}$)n,Sn=a1+4a2+42a3+…+4n-1an,類(lèi)比課本中推導(dǎo)等比數(shù)列前項(xiàng)和公式的方法,可求得5Sn-4nan=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.關(guān)于x的不等式x2-2x+3>0解集為( 。
A.(-1,3)B.C.RD.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知直線L1:(3+m)x+4y=5-3m與直線L2:2x+(6+m)y=8垂直,則m的值為( 。
A.5B.-5C.3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.計(jì)算:$\sqrt{3+2\sqrt{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案