20.下列結(jié)論中,成立的是(  )
A.若a≠b,則a2≠b2B.若a2≠b2,則a≠bC.若a2>b2,則a>bD.若a>b,則a2>b2

分析 A.若a=-b,則a2=b2,即可判斷出正誤;
B.若a2≠b2,則a≠±b,即可判斷出正誤;
C.若a2>b2,則a>b或a<-b,即可判斷出正誤;
D.不一定成立,例如取a=1,b=-2,即可判斷出正誤.

解答 解:A.若a=-b,則a2=b2,因此不正確;
B.若a2≠b2,則a≠±b,正確;
C.若a2>b2,則a>b或a<-b,因此不正確;
D.若a>b,則a2>b2不一定成立,例如取a=1,b=-2.
故選:B.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.比較下列各組數(shù)的大小,并說(shuō)明理由.
(1)1.80.6,0.81.6,1.81.6
(2)log32,log23,log25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.tan(-165°)的值是(  )
A.2+$\sqrt{3}$B.-2-$\sqrt{3}$C.2-$\sqrt{3}$D.$\sqrt{3}$-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.計(jì)算:$(3\frac{3}{8})^{-\frac{2}{3}}-(5\frac{4}{9})^{0.5}$+$(0.008)^{-\frac{2}{3}}$÷$(0.02)^{-\frac{1}{2}}$×$(0.32)^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知正實(shí)數(shù)x,y,z滿足z=x2-xy+4y2,則當(dāng)$\frac{z}{xy}$取得最小值時(shí),$\frac{1}{x}-\frac{2}{y}+\frac{3}{z}$的最小值為$-\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知等比數(shù)列{an}的各項(xiàng)都為正數(shù),其前n和為Sn,且a1+a7=9,a4=2$\sqrt{2}$,則S6=7$\sqrt{2}$+7或7$\sqrt{2}$+14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在極坐標(biāo)系中,已知圓C經(jīng)過(guò)點(diǎn)P($\sqrt{2}$,$\frac{π}{4}$),圓心為直線ρsin(θ-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$與極軸的交點(diǎn).
(1)求圓C的極坐標(biāo)方程;
(2)求直線θ=$\frac{π}{3}$(ρ∈R)被圓C所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知△ABC,$AC=BC=\sqrt{2}a$,∠ACB=90°,過(guò)點(diǎn)A,B作線段AN,BM分別與△ABC所在的平面垂直,且AN=AB=2BM,E,F(xiàn),P分別是線段NC,AB,MC的中點(diǎn).
(Ⅰ)求證:EF∥平面MBC;
(Ⅱ)求異面直線AB與ME所成角的余弦值;
(Ⅲ)求四面體PBMF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=x+$\frac{1}{x}$(x≠0)是( 。
A.奇函數(shù),且在(0,1)上是增函數(shù)B.奇函數(shù),且在(0,1)上是減函數(shù)
C.偶函數(shù),且在(0,1)上是增函數(shù)D.偶函數(shù),且在(0,1)上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案