15.已知正實數(shù)x,y,z滿足z=x2-xy+4y2,則當$\frac{z}{xy}$取得最小值時,$\frac{1}{x}-\frac{2}{y}+\frac{3}{z}$的最小值為$-\frac{9}{8}$.

分析 首先求出$\frac{z}{xy}$的代數(shù)式,利用基本不等式求最小值,得到去最小值時的x,y 的關(guān)系,然后求$\frac{1}{x}-\frac{2}{y}+\frac{3}{z}$的最小值.

解答 解:正實數(shù)x,y,z滿足z=x2-xy+4y2,則$\frac{z}{xy}=\frac{x}{y}+\frac{4y}{x}-1$≥3,(當且僅當x=2y時等號成立),則當$\frac{z}{xy}$取得最小值3時,$\frac{1}{x}-\frac{2}{y}+\frac{3}{z}$=$\frac{1}{2y}-\frac{2}{y}+\frac{3}{6{y}^{2}}$=$\frac{1}{2{y}^{2}}-\frac{3}{2y}$=$\frac{1}{2}$($\frac{1}{y}-\frac{3}{2}$)2-$\frac{9}{8}$的最小值為$-\frac{9}{8}$;
故答案為:$-\frac{9}{8}$.

點評 本題考查了基本不等式的運用求代數(shù)式的最值;關(guān)鍵是注意不等式運用的三個條件.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合A={x||x-1|<2},B={x|x2-ax+1<0},若A∪B=A.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知單位圓與角α的終邊的交點為(sin$\frac{4π}{7}$,cos$\frac{4π}{7}$),則α可能為( 。
A.$\frac{4π}{7}$B.$\frac{π}{14}$C.$\frac{15π}{14}$D.$\frac{27π}{14}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)y=2cosx(sinx-cosx),求函數(shù)的值域和最小正周期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)點P(x,y)是曲線a|x|+b|y|=1(a>0,b>0)上的動點,且滿足$\sqrt{{x}^{2}+{y}^{2}+2y+1}$+$\sqrt{{x}^{2}+{y}^{2}-2y+1}$≤2$\sqrt{2}$,則a+$\sqrt{2}$b的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列結(jié)論中,成立的是( 。
A.若a≠b,則a2≠b2B.若a2≠b2,則a≠bC.若a2>b2,則a>bD.若a>b,則a2>b2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)f(x)=1+cos2x的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,四棱錐S-ABCD中,底面ABCD是菱形,其對角線的交點為O,且SA=SC,SA⊥BD.

(1)求證:SO⊥平面ABCD;
(2)設(shè)∠BAD=60°,AB=SD=2,P是側(cè)棱SD上的一點,且SB∥平面APC,求三棱錐A-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)f(x)=sinπx+2xcosx的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案