【題目】設(shè){an}是一個(gè)公差不為零的等差數(shù)列,其前n項(xiàng)和為Sn , 已知S9=90,且a1 , a2 , a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d(d≠0),則a2=a1+d,a4=a1+3d,
由a1,a2,a4成等比數(shù)列,可得 ,
即 ,
整理,可得a1=d.
由 ,可得a1=d=2,
∴an=a1+(n﹣1)d=2n
(2)解:由于an=2n,
所以 ,
從而 ,
即數(shù)列{bn}的前n項(xiàng)和為 .
【解析】(1)設(shè)等差數(shù)列{an}的公差為d(d≠0),由a1 , a2 , a4成等比數(shù)列,可得 ,即 ,由 ,聯(lián)立解出即可得出.(2)利用“裂項(xiàng)求和”即可得出.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)給出的空間幾何體的三視圖,用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖.(寫(xiě)出畫(huà)法,并保留作圖痕跡)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓: 的離心率為,直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)原點(diǎn)的直線(xiàn)與橢圓交于, 兩點(diǎn)(, 不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且.直線(xiàn)與軸、軸分別交于兩點(diǎn).設(shè)直線(xiàn)的斜率分別為,證明存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天然氣是較為安全的燃?xì)庵,它不含一氧化碳,也比空氣輕,一旦泄露,立即會(huì)向上擴(kuò)散,不易積累形成爆炸性氣體,安全性較高,其優(yōu)點(diǎn)有:①綠色環(huán)保;②經(jīng)濟(jì)實(shí)惠;③安全可靠;④改善生活. 某市政府為了節(jié)約居民天然氣,計(jì)劃在本市試行居民天然氣定額管理,即確定一個(gè)居民年用氣量的標(biāo)準(zhǔn),為了確定一個(gè)較為合理的標(biāo)準(zhǔn),必須先了解全市居民日常用氣量的分布情況,現(xiàn)采用抽樣調(diào)查的方式,獲得了位居民某年的用氣量(單位:立方米),樣本統(tǒng)計(jì)結(jié)果如下圖表.
(1)分布求出的值;
(2)若從樣本中年均用氣量在(單位:立方米)的5位居民中任選2人作進(jìn)一步的調(diào)查研究,求年均用氣量最多的居民被選中的概率(5位居民的年均用氣量均不相等).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)與向量 =(2,sinC)共線(xiàn),求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( , ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為常數(shù)).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若在區(qū)間的極大值、極小值各有一個(gè),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分圖象如圖所示;
(1)求ω,φ;
(2)將y=f(x)的圖象向左平移θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)的圖象,若y=g(x)圖象的一個(gè)對(duì)稱(chēng)點(diǎn)為( ,0),求θ的最小值.
(3)對(duì)任意的x∈[ , ]時(shí),方程f(x)=m有兩個(gè)不等根,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com