為了解某班關(guān)注NBA是否與性別有關(guān),對(duì)本班48人進(jìn)行了問卷調(diào)查得到如下的列聯(lián)表:

 
關(guān)注NBA
不關(guān)注NBA
合計(jì)
男生
 
6
 
女生
10
 
 
合計(jì)
 
 
48
已知在全班48人中隨機(jī)抽取1人,抽到關(guān)注NBA的學(xué)生的概率為.
(1)請(qǐng)將上面的表補(bǔ)充完整(不用寫計(jì)算過(guò)程),并判斷是否有95%的把握認(rèn)為關(guān)注NBA與性別有關(guān)?說(shuō)明你的理由.
(2)現(xiàn)記不關(guān)注NBA的6名男生中某兩人為a,b,關(guān)注NBA的10名女生中某3人為c,d,e,從這5人中選取2人進(jìn)行調(diào)查,求:至少有一人不關(guān)注NBA的被選取的概率。
下面的臨界值表,供參考
P(K2≥k)
0.10
0.05
0.010
0.005
K
2.706
3.841
60635
7.879
(參考公式:)其中n=a+b+c+d

(1)有95%把握認(rèn)為關(guān)注NBA與性別有關(guān).(2)至少有一人不關(guān)注NBA的被選取的概率為P=.

解析試題分析:(1)先根據(jù)已知條件把列聯(lián)表補(bǔ)充完整,由公式計(jì)算即可;(2)先列舉從5人中選2人的基本事件,再列舉至少有一人不關(guān)注NBA的事件,即可求得概率.
試題解析:(1)列聯(lián)表補(bǔ)充如下:

 
關(guān)注NBA
不關(guān)注NBA
合計(jì)
男生
22
6
28
女生
10
10
20
合計(jì)
32
16
48
            (2分)
由公式                      (5分)
因?yàn)?.286>3.841.故有95%把握認(rèn)為關(guān)注NBA與性別有關(guān).               (7分)
(2)從5人中選2人的基本事件有:ab,ac,ad.ae,bc,bd,be,cd,ce,de共10種,
其中至少有一人不關(guān)注NBA的有:ab,ac,ad,ae,bc,bd,be共7種,
故所求的概率為P=                               (13分)
考點(diǎn):獨(dú)立性檢驗(yàn)、古典概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間,他們參加的次預(yù)賽成績(jī)記錄如下: 
甲                    乙               
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)從甲、乙兩人的成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙高的概率;
(3)①求甲、乙兩人的成績(jī)的平均數(shù)與方差,②若現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,
根據(jù)你的計(jì)算結(jié)果,你認(rèn)為選派哪位學(xué)生參加合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在某次數(shù)學(xué)考試中,抽查了1000名學(xué)生的成績(jī),得到頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.

(1)下表是這次抽查成績(jī)的頻數(shù)分布表,試求正整數(shù)、的值;

區(qū)間
[75,80)
[80,85)
[85,90)
[90,95)
[95,100]
人數(shù)
50
a
350
300
b
(2)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績(jī)進(jìn)行分析,求抽取成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù);
(3)在根據(jù)(2)抽取的40名學(xué)生中,要隨機(jī)選取2名學(xué)生參加座談會(huì),記其中成績(jī)?yōu)閮?yōu)秀的人數(shù)為X,求X的分布列與數(shù)學(xué)期望(即均值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

從某校高二年級(jí)名男生中隨機(jī)抽取名學(xué)生測(cè)量其身高,據(jù)測(cè)量被測(cè)學(xué)生的身高全部在之間.將測(cè)量結(jié)果按如下方式分成組:第一組,第二組, ,第八組,如下右圖是按上述分組得到的頻率分布直方圖的一部分.已知第一組與第八組的人數(shù)相同,第六組、第七組和第八組的人數(shù)依次成等差數(shù)列.
頻率分布表如下:

分組
頻數(shù)
頻率
頻率/組距
 
 
 
 








 
 
 
 
頻率分布直方圖如下:

(1)求頻率分布表中所標(biāo)字母的值,并補(bǔ)充完成頻率分布直方圖;
(2)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取名男生,記他們的身高分別為,求滿足:的事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2013年某市某區(qū)高考文科數(shù)學(xué)成績(jī)抽樣統(tǒng)計(jì)如下表:
(1)求出表中m、n、M、N的值,并根據(jù)表中所給數(shù)據(jù)在下面給出的坐標(biāo)系中畫出頻率分布直方圖;(縱坐標(biāo)保留了小數(shù)點(diǎn)后四位小數(shù))

(2)若2013年北京市高考文科考生共有20000人,試估計(jì)全市文科數(shù)學(xué)成績(jī)?cè)?0分及90分以上的人數(shù);
(3)香港某大學(xué)對(duì)內(nèi)地進(jìn)行自主招生,在參加面試的學(xué)生中,有7名學(xué)生數(shù)學(xué)成績(jī)?cè)?40分以上,其中男生有4名,要從7名學(xué)生中錄取2名學(xué)生,求其中恰有1名女生被錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

根據(jù)我國(guó)發(fā)布的《環(huán)境空氣質(zhì)量指數(shù)技術(shù)規(guī)定》(試行),共分為六級(jí):為優(yōu),為良,為輕度污染,為中度污染,均為重度污染,及以上為嚴(yán)重污染.某市2013年11月份天的的頻率分布直方圖如圖所示:

⑴該市11月份環(huán)境空氣質(zhì)量?jī)?yōu)或良的共有多少天?
⑵若采用分層抽樣方法從天中抽取天進(jìn)行市民戶外晨練人數(shù)調(diào)查,則中度污染被抽到的天數(shù)共有多少天?
⑶空氣質(zhì)量指數(shù)低于時(shí)市民適宜戶外晨練,若市民王先生決定某天早晨進(jìn)行戶外晨練,則他當(dāng)天適宜戶外晨練的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠生產(chǎn)兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:大于或等于7.5為正品,小于7.5為次品.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取這兩種元件各5件進(jìn)行檢測(cè),檢測(cè)結(jié)果記錄如下:


7
7
7.5
9
9.5

6

8.5
8.5

由于表格被污損,數(shù)據(jù)看不清,統(tǒng)計(jì)員只記得,且兩種元件的檢測(cè)數(shù)據(jù)的平均值相等,方差也相等.
(Ⅰ)求表格中的值;
(Ⅱ)若從被檢測(cè)的5件種元件中任取2件,求2件都為正品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照,,,的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).

頻率分布直方圖                           莖葉圖
(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),設(shè)表示所抽取的3名同學(xué)中得分在的學(xué)生個(gè)數(shù),求的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在一次數(shù)學(xué)統(tǒng)考后,某班隨機(jī)抽取10名同學(xué)的成績(jī)進(jìn)行樣本分析,獲得成績(jī)數(shù)據(jù)的莖葉圖如下.

(Ⅰ)計(jì)算樣本的平均成績(jī)及方差;
(Ⅱ)現(xiàn)從80分以上的樣本中隨機(jī)抽出2名學(xué)生,求抽出的2名學(xué)生的成績(jī)分別在、上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案