【題目】“垛積術(shù)”是我國(guó)古代數(shù)學(xué)的重要成就之一.南宋數(shù)學(xué)家楊輝在《詳解九章算法》中記載了“方垛”的計(jì)算方法:“果子以垛,下方十四個(gè),問(wèn)計(jì)幾何?術(shù)曰:下方加一,乘下方為平積.又加半為高,以乘下方為高積.如三而一.”意思是說(shuō),將果子以方垛的形式擺放(方垛即每層均為正方形,自下而上每層每邊果子數(shù)依次遞減1個(gè),最上層為1個(gè)),最下層每邊果子數(shù)為14個(gè),問(wèn)共有多少個(gè)果子?計(jì)算方法用算式表示為.利用“方垛”的計(jì)算方法,可計(jì)算最下層每邊果子數(shù)為14個(gè)的“三角垛”(三角垛即每層均為正三角形,自下而上每層每邊果子數(shù)依次遞減1個(gè),最上層為1個(gè))共有果子數(shù)為(

A.420個(gè)B.560個(gè)C.680個(gè)D.1015個(gè)

【答案】B

【解析】

由題意可得,最下層每邊為個(gè)果子的“方垛”總的果子數(shù)的計(jì)算式為,再由最下層每邊為個(gè)果子的“三角操”自上而下的第層果子數(shù)為,得層“三角操”總的果子數(shù)為,最后用分組求和的方法即可求解.

由題意知,最下層每邊為14個(gè)果子的“方垛”總的果子數(shù)的計(jì)算式為

所以可得最下層每邊為個(gè)果子的“方垛”總的果子數(shù)的計(jì)算式為,

最下層每邊為個(gè)果子的“三角垛”自上而下的第層果子數(shù)為,所以層“三角垛”總的果子數(shù)為,因?yàn)?/span>

,

所以取,可得“三角垛”的果子總數(shù)為560個(gè).

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)圖象上的各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,再向左平移個(gè)單位,得到的圖象,下列說(shuō)法正確的是(

A.點(diǎn)是函數(shù)圖象的對(duì)稱中心

B.函數(shù)上單調(diào)遞減

C.函數(shù)的圖象與函數(shù)的圖象相同

D.是函數(shù)的零點(diǎn),則的整數(shù)倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司以客戶滿意為出發(fā)點(diǎn),隨機(jī)抽選2000名客戶,以調(diào)查問(wèn)卷的形式分析影響客戶滿意度的各項(xiàng)因素.每名客戶填寫一個(gè)因素,下圖為客戶滿意度分析的帕累托圖.帕累托圖用雙直角坐標(biāo)系表示,左邊縱坐標(biāo)表示頻數(shù),右邊縱坐標(biāo)表示頻率,分析線表示累計(jì)頻率,橫坐標(biāo)表示影響滿意度的各項(xiàng)因素,按影響程度(即頻數(shù))的大小從左到右排列,以下結(jié)論正確的個(gè)數(shù)是( ).

35.6%的客戶認(rèn)為態(tài)度良好影響他們的滿意度;

156位客戶認(rèn)為使用禮貌用語(yǔ)影響他們的滿意度;

③最影響客戶滿意度的因素是電話接起快速;

④不超過(guò)10%的客戶認(rèn)為工單派發(fā)準(zhǔn)確影響他們的滿意度.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)坐標(biāo)為,點(diǎn),在該拋物線上且位于軸的兩側(cè),

(Ⅰ)證明:直線過(guò)定點(diǎn);

(Ⅱ)以,為切點(diǎn)作的切線,設(shè)兩切線的交點(diǎn)為,點(diǎn)為圓上任意一點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),時(shí),恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長(zhǎng)為2的正方形,ACDGEF,且.

1)證明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,mnR.

1)當(dāng)m0時(shí),求函數(shù)的極值;

2)當(dāng)n0時(shí),函數(shù)(0)上為單調(diào)函數(shù),求m的取值范圍;

3)當(dāng)n0時(shí),判斷是否存在正數(shù)m,使得函數(shù)有相同的零點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C1a0,b0)的左焦點(diǎn)為F(﹣c,0),拋物線y24cx的準(zhǔn)線與雙曲線的一個(gè)交點(diǎn)為P,點(diǎn)M為線段PF的中點(diǎn),且OFM為等腰直角三角形,則雙曲線C的離心率為(

A.B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線E的極坐標(biāo)方程為,直線l的參數(shù)方程為(t為參數(shù)).點(diǎn)P為曲線E上的動(dòng)點(diǎn),點(diǎn)Q為線段OP的中點(diǎn).

1)求點(diǎn)Q的軌跡(曲線C)的直角坐標(biāo)方程;

2)若直線l交曲線CA,B兩點(diǎn),點(diǎn)恰好為線段AB的三等分點(diǎn),求直線l的普通方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案