在銳角△ABC中,角A、B、C所對的邊分別為a、b、c.向量
m
=(1,cosB),
n
=(sinB,-
3
),且
m
n

(Ⅰ)求角B的大;
(Ⅱ)若△ABC面積為
3
3
2
,a=2,求b的值.
考點:正弦定理,平面向量數(shù)量積的運算
專題:解三角形,平面向量及應用
分析:(I)利用數(shù)量積運算和同角三角函數(shù)基本關系式即可得出.
(II)利用三角形的面積計算公式和余弦定理即可得出.
解答: 解:(I)∵
m
n

m
n
=sinB-
3
cosB
=0,
∵△ABC為銳角三角形,∴cosB≠0,
tanB=
3

B=
π
3

(II)∵S△ABC=
1
2
acsinB
=
1
2
×2csin
π
3
=
3
3
2
,解得c=3.
由余弦定理可得:b2=a2+c2-2accosB=22+32-2×2×3×cos
π
3
=7,
b=
7
點評:本題考查了數(shù)量積運算和同角三角函數(shù)基本關系式、三角形的面積計算公式和余弦定理,考查了計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正三角形OAB中,點O為原點,點B的坐標是(-3,4),點A在第一象限,向量
m
=(-1,0),記向量
m
與向量
OA
的夾角為α,則sinα的值為(  )
A、-
4+3
3
10
B、
4-3
3
10
C、
3
3
-4
10
D、
4+3
3
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα+cosα=
2
2
,計算下列各式的值:
(1)sinα-cosα;                
(2)
1
sin2α
+
1
cos2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=
4x
4x+2
,若0<a<1,試求:
(1)求f(a)+f(1-a)的值;
(2)求f(
1
4011
)+f(
2
4011
)+f(
3
4011
)+…+f(
4010
4011
)的值;
(3)求f(x)值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x+1)-ln(1-x)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性;
(3)求使f(x)>1的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a2-a1=8,且a4為a2和a3的等比中項,求數(shù)列{an}的首項、公差及前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個首項為正數(shù)的等差數(shù)列{an},如果它的前三項之和與前11項之和相等,那么該數(shù)列的前多少項和最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln|x|(x≠0),函數(shù)g(x)=
1
f′(x)
+af′(x)(x≠0)
(1)當x≠0時,求函數(shù)y=g(x)的表達式;
(2)若a>0,函數(shù)y=g(x)在(0,+∞)上的最小值是2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,內角A、B、C的對邊長分別為a、b、c.若a2-c2=2b,且sinB=4cosAsinC,求b.

查看答案和解析>>

同步練習冊答案