在等差數(shù)列{an}中,a2-a1=8,且a4為a2和a3的等比中項(xiàng),求數(shù)列{an}的首項(xiàng)、公差及前n項(xiàng)和.
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:利用a2-a1=8,求出d,利用a4為a2和a9的等比中項(xiàng),求出首項(xiàng),即可求出數(shù)列的前n項(xiàng)和.
解答: 解:設(shè)該數(shù)列公差為d(d≠0),前n項(xiàng)和為Sn
由已知,可得d=8,
因?yàn)閍4為a2和a3的等比中項(xiàng),
所以(a1+24)2=(a1+8)(a1+16)
解得,a1=-
56
3

即數(shù)列{an}的首項(xiàng)為-
56
3
,公差為8.
所以數(shù)列的前n項(xiàng)和Sn=
12n2-68n
3
點(diǎn)評:本題主要考查等差數(shù)列、等比中項(xiàng)等基礎(chǔ)知識,考查運(yùn)算能力,考查分類與整合等數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=x3
1
2x-1
+
1
2
)關(guān)于(  )對稱.
A、x軸B、y軸
C、(0,0)D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡下列各式:
(1)
cos(α-
π
2
)
sin(
2
+α)
•sin(
π
2
-α)cos(2π+α);
(2)sin2
π
3
+α)+sin2
π
6
-α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x>2},B={x|-1<x≤3},求:A∩B,∁UB,(∁UB)∪A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A、B、C所對的邊分別為a、b、c.向量
m
=(1,cosB),
n
=(sinB,-
3
),且
m
n

(Ⅰ)求角B的大;
(Ⅱ)若△ABC面積為
3
3
2
,a=2,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:lg10+ln1+lne-3+log2520+log255-log254.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比q=3,前3項(xiàng)和S3=26.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{{bn}滿足:bn=an+(-1)nlnan,求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

猴子第一天摘下若干個桃子,當(dāng)即吃了一半,還不過癮,又多吃了一個,第二天早上又將剩下的桃子吃掉一半,又多吃一個,以后每天早上吃前一天剩下的一半零一個,到第十天想吃時,見只剩一個桃子了.請畫出流程圖并寫出偽代碼求第一天共摘了多少桃子?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:
(1)經(jīng)過兩點(diǎn)A(0,2)和B(
1
2
,
3
).
(2)已知P點(diǎn)在以坐標(biāo)軸為對稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為
4
3
5
2
3
5
,過P作長軸的垂線恰好過橢圓的一個焦點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案