13.已知(-1,y1),(-2,y2),(-4,y3)是拋物線y=-2x2-8x+m上的點(diǎn),則( 。
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1

分析 拋物線y=-2x2-8x+m開口朝下,且以直線x=-2為對(duì)稱軸,進(jìn)而可得三個(gè)函數(shù)值的大。

解答 解:拋物線y=-2x2-8x+m開口朝下,且以直線x=-2為對(duì)稱軸,
故f(-2)>f(-1)=f(-3)>f(-4),
即y3<y1<y2
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)(1-2x)3=a0+2a1x+4a2x2+8a3x3+16a4x4+32a5x5,則a1+a2+a3+a4+a5=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓心在x軸上、半徑為$\sqrt{3}$的圓O位于y軸左側(cè),且與直線x+y=0相切,則圓O的標(biāo)準(zhǔn)方程是(x+$\sqrt{6}$)2+y2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線l交橢圓與兩點(diǎn)A,B,則|AF2|+|BF2|的最大值為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正項(xiàng)等比數(shù)列{an}中,a6=a5+2a4,若存在兩項(xiàng)am,an使得$\sqrt{{a_m}{a_n}}$=4a1,則$\frac{1}{m}$+$\frac{2}{n}$的最小值是( 。
A.$\frac{{3+2\sqrt{2}}}{6}$B.1C.$\frac{11}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)計(jì)算:${(-\frac{1}{2})^{-2}}-|{-1+\sqrt{3}}|+2sin{60^0}+{(π-4)^0}$
(2)解方程或方程組:①$\left\{\begin{array}{l}2x+y=0\\ 3x-2y=7\end{array}\right.$②${m^2}+(5\sqrt{3}tan{30^o})m-12cos{60^o}=0$
(3)解不等式組
求不等式組$\left\{\begin{array}{l}x-1≥1-x\\ x+8>4x-1.\end{array}\right.$的整數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知正三棱柱ABC-A′B′C′如圖所示,其中G是BC的中點(diǎn),D,E分別在線段AG,A′C上運(yùn)動(dòng),使得DE∥平面BCC′B′,CC′=2BC=4.
(1)求二面角A′-B′C-C′的余弦值;
(2)求線段DE的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,矩形O′A′B′C′是水平放置的一個(gè)平面圖形的直觀圖,其中O′A′=6,O′C′=2,則原圖形OABC的面積為24$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一奶制品加工廠以牛奶為原料分別在甲、乙兩類設(shè)備上加工生產(chǎn)A、B兩種奶制品,如用甲類設(shè)備加工一桶牛奶,需耗電12千瓦時(shí),可得3千克A制品;如用乙類設(shè)備加工一桶牛奶,需耗電8千瓦時(shí),可得4千克B制品.根據(jù)市場(chǎng)需求,生產(chǎn)的A、B兩種奶制品能全部售出,每千克A獲利a元,每千克B獲利b元.現(xiàn)在加工廠每天最多能得到50桶牛奶,每天兩類設(shè)備工作耗電的總和不得超過480千瓦時(shí),并且甲類設(shè)備每天至多能加工102千克A制品,乙類設(shè)備的加工能力沒有限制.其生產(chǎn)方案是:每天用x桶牛奶生產(chǎn)A制品,用y桶牛奶生產(chǎn)B制品(為了使問題研究簡(jiǎn)化,x,y可以不為整數(shù)).
(Ⅰ)若a=24,b=16,試為工廠制定一個(gè)最佳生產(chǎn)方案(記此最佳生產(chǎn)方案為F0),即x,y分別為何值時(shí),使工廠每天的獲利最大,并求出該最大值;
(Ⅱ) 隨著季節(jié)的變換和市場(chǎng)的變化,以及對(duì)原配方的改進(jìn),市場(chǎng)價(jià)格也發(fā)生變化,獲利也隨市場(chǎng)波動(dòng).若a=24(1+4λ),b=16(1+5λ-5λ2)(這里0<λ<1),其它條件不變,試求λ的取值范圍,使工廠當(dāng)且僅當(dāng)采。á瘢┲械纳a(chǎn)方案F0時(shí)當(dāng)天獲利才能最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案