【題目】如圖,在長方形ABCD中,AB=4,AD=2,點E是DC的中點,將△ADE沿AE折起,使平面ADE⊥平面ABCE,連結(jié)DB、DC、EB.
(1)求證:平面ADE⊥平面BDE;
(2)求AD與平面BDC所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)利用勾股定理的逆定理可得:AE⊥EB,再利用面面垂直的判定定理即可得出:BE⊥平面ADE,進(jìn)而證明結(jié)論.
(2)建立空間直角坐標(biāo)系.設(shè)平面BDC的法向量為,可得求出,可得AD與平面BDC所成角的正弦值.
(1)證明:AE2+BE216=AB2,∴AE⊥EB,
又平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,
∴BE⊥平面ADE,又平面,
∴平面ADE⊥平面BDE;
(2)解:如圖所示,建立空間直角坐標(biāo)系.E(0,0,0),A(2,0,0),B(0,2,0),D(,0,),C(,,0).
(,,0).(,2,),(,0,),
設(shè)平面BDC的法向量為
則,,x+2z=0,
取.
∴AD與平面BDC所成角的正弦值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二年級某班的數(shù)學(xué)課外活動小組有6名男生,4名女生,從中選出4人參加數(shù)學(xué)競賽考試,用X表示其中男生的人數(shù).
(1)請列出X的分布列;
(2)根據(jù)你所列的分布列求選出的4人中至少有3名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】依據(jù)某地某條河流8月份的水文觀測點的歷史統(tǒng)計數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當(dāng)?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災(zāi)害等級的頻率分布條形圖如圖(乙)所示.
試估計該河流在8月份水位的中位數(shù);
(1)以此頻率作為概率,試估計該河流在8月份發(fā)生1級災(zāi)害的概率;
(2)該河流域某企業(yè),在8月份,若沒受1、2級災(zāi)害影響,利潤為500萬元;若受1級災(zāi)害影響,則虧損100萬元;若受2級災(zāi)害影響則虧損1000萬元.
現(xiàn)此企業(yè)有如下三種應(yīng)對方案:
方案 | 防控等級 | 費用(單位:萬元) |
方案一 | 無措施 | 0 |
方案二 | 防控1級災(zāi)害 | 40 |
方案三 | 防控2級災(zāi)害 | 100 |
試問,如僅從利潤考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①.②的面積,③這三個條件中任選一個,補(bǔ)充在下面問題中,問題中的是否為等邊三角形,請說明理由.在中,分別為內(nèi)角的對邊,且,________,試判斷是否為等邊三角形?(注:如果選擇多個條件分別解答,按第一個解答計分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點M是棱長為2的正方體ABCD-A1B1C1D1的棱AD的中點,點P在面BCC1B1所在的平面內(nèi),若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點P到點C1的最短距離是( )
A.B.C.1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有關(guān)獨立性檢驗的四個命題,其中正確的是( )
A.兩個變量的2×2列聯(lián)表中,對角線上數(shù)據(jù)的乘積相差越大,說明兩個變量有關(guān)系成立的可能性就越大
B.對分類變量X與Y的隨機(jī)變量的觀測值k來說,k越小,“X與Y有關(guān)系”的可信程度越小
C.從獨立性檢驗可知:有95%的把握認(rèn)為禿頂與患心臟病有關(guān),我們說某人禿頂,那么他有95%的可能患有心臟病
D.從獨立性檢驗可知:有99%的把握認(rèn)為吸煙與患肺癌有關(guān),是指在犯錯誤的概率不超過1%的前提下認(rèn)為吸煙與患肺癌有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠加工產(chǎn)品的工人的年齡構(gòu)成和相應(yīng)的平均正品率如下表:
年齡(單位:歲) | ||||
人數(shù)比例 | 0.3 | 0.4 | 0.2 | 0.1 |
平均正品率 | 85% | 95% | 80% | 70% |
(1)畫出該工廠加工產(chǎn)品的工人的年齡頻率分布直方圖;
(2)估計該工廠工人加工產(chǎn)品的平均正品率;
(3)該工廠想確定一個轉(zhuǎn)崗年齡歲,到達(dá)這個年齡的工人不再加工產(chǎn)品,轉(zhuǎn)到其他崗位,為了使剩余工人加工產(chǎn)品的平均正品率不低于90%,若年齡在同一區(qū)間內(nèi)的工人加工產(chǎn)品的正品率都取相應(yīng)區(qū)間的平均正品率,則估計最高可定為多少歲?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com