【題目】已知三棱錐PABC的平面展開圖中,四邊形ABCD為邊長等于的正方形,△ABE和△BCF均為正三角形,在三棱錐PABC中:

1)證明:平面PAC⊥平面ABC

2)若點M為棱PA上一點且,求二面角PBCM的余弦值.

【答案】1)見解析(2

【解析】

1)如圖①,設(shè)AC的中點為O,連結(jié).

由題意,得,PO=2,.

因為在△PAC中,PA=PC,OAC的中點,所以POAC.

又因為在△POB中,PO=2,OB=2PB=,,所以POOB.

因為ACOB=O,AC,OB平面ABC,所以PO⊥平面ABC.

又因為PO平面PAC,所以平面PAC⊥平面ABC.

2)由PO⊥平面ABC,OBAC,所以.

于是以OC、OB、OP所在直線分別為x軸、y軸、z軸建立如圖②所示的空間直角坐標(biāo)系,

,,

,.

設(shè)平面MBC的法向量為,則由,

,則,即.

設(shè)平面PBC的法向量為,由,

x2=1,則,即.

.

由圖可知,二面角PBCM的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙十一購物狂歡節(jié),是指每年1111日的網(wǎng)絡(luò)促銷日,源于淘寶商城(天貓)20091111日舉辦的網(wǎng)絡(luò)促銷活動,已成為中國電子商務(wù)行業(yè)的年度盛事.某生產(chǎn)商為了了解其生產(chǎn)的產(chǎn)品在不同電商平臺的銷售情況,統(tǒng)計了兩個電商平臺各十個網(wǎng)絡(luò)銷售店鋪的銷售數(shù)據(jù):

電商平臺

64

71

81

70

79

69

82

73

75

60

電商平臺

60

80

97

77

96

87

76

83

94

96

1)作出兩個電商平臺銷售數(shù)據(jù)的莖葉圖,根據(jù)莖葉圖判斷哪個電商平臺的銷售更好,并說明理由;

2)填寫下面關(guān)于店鋪個數(shù)的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為銷售量與電商平臺有關(guān);

銷售量

銷售量

總計

電商平臺

電商平臺

總計

3)生產(chǎn)商要從這20個網(wǎng)絡(luò)銷售店鋪銷售量前五名的店鋪中,隨機抽取三個店鋪進行銷售返利,則其中恰好有兩個店鋪的銷售量在95以上的概率是多少?

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,平面,,.,為鄰邊作平行四邊形,連接.

1)求證:平面

2)若二面角45°

①證明:平面平面

②求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形是邊長為的正方形,是等腰直角三角形,且平面

1)求異面直線所成角的余弦值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),以直角坐標(biāo)系點為極點,為極軸,且長度單位相同,建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為.

1)求直線的傾斜角;

2)若直線與曲線交于,兩點,求的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司培訓(xùn)員工某項技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時,周日測試

方式二:周六一天培訓(xùn)4小時,周日測試

公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進行培訓(xùn),分別估計員工受訓(xùn)的平均時間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過的直線與拋物線C交于兩點,點A在第一象限,拋物線C兩點處的切線相互垂直.

1)求拋物線C的標(biāo)準(zhǔn)方程;

2)若點P為拋物線C上異于的點,直線均不與軸平行,且直線APBP交拋物線C的準(zhǔn)線分別于兩點,.

i)求直線的斜率;

(ⅱ)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小芳、小明兩人各拿兩顆質(zhì)地均勻的骰子做游戲,規(guī)則如下:若擲出的點數(shù)之和為4的倍數(shù),則由原投擲人繼續(xù)投擲;若擲出的點數(shù)之和不是4的倍數(shù),則由對方接著投擲.

1)規(guī)定第1次從小明開始.

(。┣笄4次投擲中小明恰好投擲2次的概率;

(ⅱ)設(shè)游戲的前4次中,小芳投擲的次數(shù)為,求隨機變量的分布列與期望.

2)若第1次從小芳開始,求第次由小芳投擲的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】這三個條件中任選一個,補充在下面問題中,并給出解答.

設(shè)等差數(shù)列的前項和為,數(shù)列的前項和為________,,若對于任意都有,且(為常數(shù)),求正整數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案