【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)是曲線上任意一點,直線與兩坐標(biāo)軸的交點分別為,求最大值.
【答案】(1)直線的普通方程為;曲線的直角坐標(biāo)方程為(2)
【解析】
(1)利用加減消元可得的普通方程,結(jié)合,可得的直角坐標(biāo)方程.
(2)根據(jù)(1)的條件,得到點,點坐標(biāo),以及使用曲線的參數(shù)方程,假設(shè)點坐標(biāo),結(jié)合輔助角公式,可得結(jié)果.
解:(1)由得,
即.
故直線的普通方程為.
由,
代入
得,
故曲線的直角坐標(biāo)方程
為.
(2)直線與坐標(biāo)軸的交點
依次為,不妨設(shè),
曲線的直角坐標(biāo)方程
化為標(biāo)準(zhǔn)方程是,
由圓的參數(shù)方程,
可設(shè)點.
于是
所以
即.
所以當(dāng),即時,
取得最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠加工某種零件需要經(jīng)過,,三道工序,且每道工序的加工都相互獨立,三道工序加工合格的概率分別為,,.三道工序都合格的零件為一級品;恰有兩道工序合格的零件為二級品;其它均為廢品,且加工一個零件為二級品的概率為.
(1)求;
(2)若該零件的一級品每個可獲利200元,二級品每個可獲利100元,每個廢品將使工廠損失50元,設(shè)一個零件經(jīng)過三道工序加工后最終獲利為元,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱的底面是邊長為2的菱形,,.、分別為和的中點.平面與棱所在直線交于點.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值;
(3)判斷點是否與點重合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)三棱錐的體積最大時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過拋物線上一點,作兩條直線分別交拋物線于,,當(dāng)與的斜率存在且傾斜角互補(bǔ)時:
(Ⅰ)求的值;
(Ⅱ)若直線在軸上的截距時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)是曲線上任意一點,直線與兩坐標(biāo)軸的交點分別為,求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:
①可以估計使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);
②可以估計不足的大學(xué)生使用主要玩游戲;
③可以估計使用主要找人聊天的大學(xué)生超過總數(shù)的.
其中正確的個數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為緩解日益擁堵的交通狀況,不少城市實施車牌競價策略,以控制車輛數(shù)量.某地車牌競價的原則是:①“盲拍”,即所有參與競拍的人都是網(wǎng)絡(luò)報價,每個人并不知曉其他人的報價,也不知道參與當(dāng)期競拍的總?cè)藬?shù);②競價時間截止后,系統(tǒng)根據(jù)當(dāng)期車牌配額,按照競價人的出價從高到低分配名額.某人擬參加2018年10月份的車牌競價,他為了預(yù)測最低成交價,根據(jù)競拍網(wǎng)站的公告,統(tǒng)計了最近5個月參與競拍的人數(shù)(見表):
月份 | 2018.04 | 2018.05 | 2018.06 | 2018.07 | 2018.08 |
月份編號t | 1 | 2 | 3 | 4 | 5 |
競拍人數(shù)y(萬人) | 0.5 | 0.6 | m | 1.4 | 1.7 |
(1)由收集數(shù)據(jù)的散點圖發(fā)現(xiàn),可以線性回歸模擬競拍人數(shù)y(萬人)與月份編號t之間的相關(guān)關(guān)系.現(xiàn)用最小二乘法求得y關(guān)于t的回歸方程為,請求出表中的m的值并預(yù)測2018年9月參與競拍的人數(shù);
(2)某市場調(diào)研機(jī)構(gòu)對200位擬參加2018年9月車牌競拍人員的報價價格進(jìn)行了一個抽樣調(diào)查,得到如下一個頻數(shù)表:
報價區(qū)間(萬元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7] |
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求這200位競拍人員報價的平均值(同一區(qū)間的報價可用該價格區(qū)間的中點值代替);
(ii)假設(shè)所有參與競拍人員的報價X服從正態(tài)分布,且為(i)中所求的樣本平均數(shù)的估值,.若2018年9月實際發(fā)放車牌數(shù)量為3174,請你合理預(yù)測(需說明理由)競拍的最低成交價.參考公式及數(shù)據(jù):若隨機(jī)變量Z服從正態(tài)分布,則:,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com