分析 (1)利用橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{5}}{5}$,短軸長(zhǎng)為4,求出a,b,c.即可求橢圓C的標(biāo)準(zhǔn)方程;
(2)①設(shè)M(t,-2t-2),由$\overrightarrow{PO}$=$\sqrt{6}$•$\overrightarrow{OM}$,得$\left\{\begin{array}{l}{{x}_{0}=-\sqrt{6}t}\\{{y}_{0}=2\sqrt{6}(t+1)}\end{array}\right.$,代入橢圓方程得:$\frac{6{t}^{2}}{5}$+6(t+1)2=1,求出M的坐標(biāo),即可求直線OP的斜率;
②求出點(diǎn)O到直線PF1、PF2的距離分別為d1、d2,利用橢圓的定義證明:$\frac{{y}_{0}}{kzrhyeo_{1}}$+$\frac{{y}_{0}}{bkmtkfu_{2}}$為定值.
解答 解:(1)由題意知,2b=4,∴b=2,又∵e=$\frac{c}{a}$=$\frac{\sqrt{5}}{5}$,且a2=b2+c2,
解得:a=$\sqrt{5}$,c=1,
∴橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}$=1; …4分
(2)①由(1)知:B(0,-2),F(xiàn)1(-1,0),∴BF1:y=-2x-2 …5分
設(shè)M(t,-2t-2),由$\overrightarrow{PO}$=$\sqrt{6}$•$\overrightarrow{OM}$,得$\left\{\begin{array}{l}{{x}_{0}=-\sqrt{6}t}\\{{y}_{0}=2\sqrt{6}(t+1)}\end{array}\right.$ …7分
代入橢圓方程得:$\frac{6{t}^{2}}{5}$+6(t+1)2=1,
∴36t2+60t+25=0,∴(6t+5)2=0,∴t=-$\frac{5}{6}$,∴M(-$\frac{5}{6}$,-$\frac{1}{3}$) …9分
∴OM的斜率為$\frac{2}{5}$,即直線OP的斜率為$\frac{2}{5}$; …10分
②由題意,PF1:y=$\frac{{y}_{0}}{{x}_{0}+1}$(x+1),即y0x-(x0+1)y+y0=0 …11分
∴d1=$\frac{{y}_{0}}{\sqrt{{{y}_{0}}^{2}+({x}_{0}+1)^{2}}}$,同理可得:d2=$\frac{{y}_{0}}{\sqrt{{{y}_{0}}^{2}+({x}_{0}-1)^{2}}}$
∴$\frac{{y}_{0}}{1lmlmfy_{1}}$+$\frac{{y}_{0}}{t0lblas_{2}}$=PF1+PF2=2a=$2\sqrt{5}$…15分
點(diǎn)評(píng) 本題考查橢圓的方程與性質(zhì),考查直線與橢圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{BC}{sinα}=\frac{AD}{sinβ}$ | B. | $\frac{AD}{sinα}=\frac{BC}{sinβ}$ | ||
C. | $\frac{{{S_{△BCD}}}}{sinα}=\frac{{{S_{△ACD}}}}{sinβ}$ | D. | $\frac{{{S_{△ACD}}}}{sinα}=\frac{{{S_{△BCD}}}}{sinβ}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com