【題目】為改善居民的生活環(huán)境,政府?dāng)M將一公園進(jìn)行改造擴(kuò)建,已知原公園是直徑為200米的半圓形,出入口在圓心處,為居民小區(qū),的距離為200米,按照設(shè)計(jì)要求,以居民小區(qū)和圓弧上點(diǎn)為線段向半圓外作等腰直角三角形為直角頂點(diǎn)),使改造后的公園成四邊形,如圖所示.

1)若時(shí),與出入口的距離為多少米?

2設(shè)計(jì)在什么位置時(shí),公園的面積最大?

【答案】12

【解析】

1設(shè),在中可表示,進(jìn)而可表示,則在在中利用余弦定理即可得解.

2)設(shè)∠AOBα,利用余弦定理得到以及三角形的面積公式得到關(guān)于α的面積表達(dá)式,結(jié)合三角函數(shù)求最值.

解:(1)設(shè)則在

2如圖,設(shè)∠AOBα,則AB2OB2+OA22OB×OA×cosα5000040000cosα,

1250010000cosα,又200×100sinα10000sinα,

S四邊形OACBSABC+SAOB1250010000cosα+10000sinα10000sinαcosα+1250010000sin+12500

∴當(dāng)sin)=1,即時(shí),四邊形OACB面積最大為(1000012500m2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義域?yàn)镽的偶函數(shù)y=f(x)滿足f(x+2)=﹣f(x),且當(dāng)x∈[0,2]時(shí),f(x)=2﹣x2 , 則方程f(x)=sin|x|在[﹣3π,3π]內(nèi)根的個(gè)數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷錯(cuò)誤的是

A. 若隨機(jī)變量服從正態(tài)分布,;

B. 組數(shù)據(jù)的散點(diǎn)都在上,則相關(guān)系數(shù);

C. 若隨機(jī)變量服從二項(xiàng)分布, ;

D. 的充分不必要條件;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=ax2+bx+ca≠0)滿足f0)=0,對(duì)于任意xR,都有fxx,且,令gx)=fx)﹣x1|λ0).

1)求函數(shù)fx)的表達(dá)式;

2)求函數(shù)gx)的單調(diào)區(qū)間;

3)當(dāng)λ2時(shí),判斷函數(shù)gx)在區(qū)間(0,1)上的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某重點(diǎn)中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以, , , , 分組的頻率分布直方圖如圖.

(1)求直方圖中的值;

(2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);

(3)在理科綜合分?jǐn)?shù)為, , 的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在的學(xué)生中應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩名籃球運(yùn)動(dòng)員分別在各自不同的5場(chǎng)比賽所得籃板球數(shù)的莖葉圖如圖所示,已知兩名運(yùn)動(dòng)員在各自5場(chǎng)比賽所得平均籃板球數(shù)均為10.

(1)求x,y的值;

(2)求甲乙所得籃板球數(shù)的方差,并指出哪位運(yùn)動(dòng)員籃板球水平更穩(wěn)定;

(3)教練員要對(duì)甲乙兩名運(yùn)動(dòng)員籃板球的整體水平進(jìn)行評(píng)估.現(xiàn)在甲乙各自的5場(chǎng)比賽中各選一場(chǎng)進(jìn)行評(píng)估,則兩名運(yùn)動(dòng)員所得籃板球之和小于18的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】保險(xiǎn)公司統(tǒng)計(jì)的資料表明:居民住宅區(qū)到最近消防站的距離x(單位:千米)和火災(zāi)所造成的損失數(shù)額y(單位:千元)有如下的統(tǒng)計(jì)資料:

距消防站距離x(千米)

1.8

2.6

3.1

4.3

5.5

6.1

火災(zāi)損失費(fèi)用y(千元)

17.8

19.6

27.5

31.3

36.0

43.2

如果統(tǒng)計(jì)資料表明yx有線性相關(guān)關(guān)系,試求:

(Ⅰ)求相關(guān)系數(shù)(精確到0.01);

(Ⅱ)求線性回歸方程(精確到0.01);

(III)若發(fā)生火災(zāi)的某居民區(qū)與最近的消防站相距10.0千米,評(píng)估一下火災(zāi)的損失(精確到0.01).

參考數(shù)據(jù):,,

,

參考公式:相關(guān)系數(shù) ,回歸方程 中斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

A.12
B.24
C.36
D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式:|2x﹣m|≤1的整數(shù)解有且僅有一個(gè)值為2.
(Ⅰ)求整數(shù)m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案