【題目】已知,若恰有兩個(gè)根,,則的取值范圍是( )
A. B. C. D.
【答案】C
【解析】試題分析:根據(jù)f(x)的圖象判斷a的范圍,用a表示出x1,x2,得出x1+x2關(guān)于a的函數(shù),從而可得出x1+x2的取值范圍.
詳解:
作出f(x)的函數(shù)圖象如圖所示:
由[f(x)]2=a可得f(x)=,
∴>1,即a>1.
不妨設(shè)x1<x2,則x12=e=,
令=t(t>1),則x1=﹣,x2=lnt,
∴x1+x2=lnt﹣,令g(t)=lnt﹣,則g′(t)=﹣ =,
∴當(dāng)1<t<4時(shí),g′(t)>0,當(dāng)t>4時(shí),g′(t)<0,
∴當(dāng)t=4時(shí),g(t)取得最大值g(4)=ln4﹣2=2ln2﹣2.
∴x1+x2≤2ln2﹣2.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某餐廳經(jīng)營盒飯生意,每天的房租、人員工資等固定成本為200元,每盒盒飯的成本為15元,銷售單價(jià)與日均銷售量的關(guān)系如下表
根據(jù)以上數(shù)據(jù),當(dāng)這個(gè)餐廳每盒盒飯定價(jià)______元時(shí),利潤最大
A.16.5B.19.5C.21.5D.22
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,動點(diǎn)滿足.設(shè)動點(diǎn)的軌跡為.
(1)求動點(diǎn)的軌跡方程,并說明軌跡是什么圖形;
(2)求動點(diǎn)與定點(diǎn)連線的斜率的最小值;
(3)設(shè)直線交軌跡于兩點(diǎn),是否存在以線段為直徑的圓經(jīng)過?若存在,求出實(shí)數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會.
(1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;
(2)設(shè)X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,A(x1,y1),B(x2,y2)是過F的直線與拋物線的兩個(gè)交點(diǎn),求證:
(1)y1y2=-p2,;(2)為定值;
(3)以AB為直徑的圓與拋物線的準(zhǔn)線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2016年1月至2018年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖,根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.各年的月接待游客量高峰期大致在7,8月份
B.年接待游客量逐年增加
C.月接待游客量逐月增加
D.各年1月至6月的月接待游客量相對7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點(diǎn)與橢圓: 的一個(gè)焦點(diǎn)重合,點(diǎn)在拋物線上,過焦點(diǎn)的直線交拋物線于、兩點(diǎn).
(Ⅰ)求拋物線的方程以及的值;
(Ⅱ)記拋物線的準(zhǔn)線與軸交于點(diǎn),試問是否存在常數(shù),使得且都成立?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,有下列正確命題的序號是________.
(1)若m∥,n∥,則m∥n, (2)若則
(3)若,且,則; (4)若,,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,對角線AC分別與AB,AD所成的角為α,β,則sin2α+sin2β=1,在長方體ABCD﹣A1B1C1D1中,對角線AC1與棱AB,AD,AA1所成的角分別為α1,α2,α3,與平面AC,平面AB1,平面AD1所成的角分別為β1,β2,β3,則下列說法正確的是( )
①sin2α1+sin2α2+sin2α3=1 、sin2α1+sin2α2+sin2α3=2
③cos2α1+cos2α2+cos2α3=1 ④sin2β1+sin2β2+sin2β3=1
A. ①③B. ②③C. ①③④D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com