【題目】已知0<α<π,tanα=﹣2.
(1)求sin(α+ )的值;
(2)求 的值;
(3)2sin2α﹣sinαcosα+cos2α
【答案】
(1)解:因?yàn)?<α<π,tanα=﹣2,所以sinα= ,cosα=
sin(α+ )=sinαcos +cosαsin = +( )× =
(2)解:原式= = =﹣1
(3)解:原式=
= =
【解析】(1)由已知中0<α<π,tanα=﹣2,根據(jù)同角三角函數(shù)關(guān)系,我們可以求出sinα,cosα的值,代入兩角和的正弦公式,即可求出sin(α+ )的值;(2)利用誘導(dǎo)公式,我們可以將原式化為用α的三角函數(shù)表示的形式,弦化切后,tanα=﹣2,即可得到答案.(3)根據(jù)sin2α+cos2α=1,我們可以將2sin2α﹣sinαcosα+cos2α化為齊次分式,弦化切后,代入tanα=﹣2,即可得到答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)原點(diǎn)O的圓C,與x軸相交于點(diǎn)A(4,0),與y軸相交于點(diǎn)B(0,2).
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)直線l過(guò)B點(diǎn)與圓C相切,求直線l的方程,并化為一般式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年電子商務(wù)蓬勃發(fā)展,在2017年的“年貨節(jié)”期間,一網(wǎng)絡(luò)購(gòu)物平臺(tái)推銷了三種商品,某網(wǎng)購(gòu)者決定搶購(gòu)這三種商品,假設(shè)該名網(wǎng)購(gòu)者都參與了三種商品的搶購(gòu),搶購(gòu)成功與否相互獨(dú)立,且不重復(fù)搶購(gòu)?fù)环N商品,對(duì)三種商品的搶購(gòu)成功的概率分別為 ,已知三件商品都被搶購(gòu)成功的概率為,至少有一件商品被搶購(gòu)成功的概率為 .
(1)求的值;
(2)若購(gòu)物平臺(tái)準(zhǔn)備對(duì)搶購(gòu)成功的三件商品進(jìn)行優(yōu)惠減免活動(dòng), 商品搶購(gòu)成功減免百元, 商品搶購(gòu)成功減免百元, 商品搶購(gòu)成功減免百元,求該名網(wǎng)購(gòu)者獲得減免的總金額(單位:百元)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}滿足a1=2,a2=4(a3﹣a4),數(shù)列{bn}滿足bn=3﹣2log2an .
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)若λ>0,求對(duì)所有的正整數(shù)n都有2λ2﹣kλ+2>a2nbn成立的k的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= sin2x+2+2cos2x.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,若f(A)=4,b=1,△ABC的面積為 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示, 矩形所在的平面, 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: .
(3)當(dāng)滿足什么條件時(shí),能使平面成立?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一期間,某商場(chǎng)決定從種服裝、種家電、種日用品中,選出種商品進(jìn)行促銷活動(dòng).
(1)試求選出種商品中至少有一種是家電的概率;
(2)商場(chǎng)對(duì)選出的某商品采用抽獎(jiǎng)方式進(jìn)行促銷,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高元,規(guī)定購(gòu)買該商品的顧客有次抽獎(jiǎng)的機(jī)會(huì): 若中一次獎(jiǎng),則獲得數(shù)額為元的獎(jiǎng)金;若中兩次獎(jiǎng),則獲得數(shù)額為元的獎(jiǎng)金;若中三次獎(jiǎng),則共獲得數(shù)額為 元的獎(jiǎng)金. 假設(shè)顧客每次抽獎(jiǎng)中獎(jiǎng)的概率都是,請(qǐng)問(wèn): 商場(chǎng)將獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷方案對(duì)商場(chǎng)有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測(cè)試,測(cè)得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
(1)畫出莖葉圖
(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、極差、方差,并判斷選誰(shuí)參加比賽比較合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), 且.
(Ⅰ)當(dāng)時(shí),令, 為常數(shù),求函數(shù)的零點(diǎn)的個(gè)數(shù);
(Ⅱ)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com