已知圓A:(x+3)2+y2=100,圓A內(nèi)一定點(diǎn)B(3,0),圓P過點(diǎn)B且與圓A內(nèi)切,則圓心P的軌跡方程是   
【答案】分析:設(shè)動(dòng)圓圓心P,半徑為r,利用兩圓相切內(nèi)切,兩圓心距和兩半徑之間的關(guān)系列出PA和PB的關(guān)系式,正好符合橢圓的定義,利用定義法求軌跡方程即可.
解答:解:設(shè)動(dòng)圓圓心P(x,y),半徑為r,⊙A的圓心為A(-3,0),半徑為10,
又因?yàn)閯?dòng)圓過點(diǎn)B,所以r=PB,
若動(dòng)圓P與⊙A相內(nèi)切,則有PA=10-r=10-PB,即PA+PB=10 
由③④得|PA+PB|=10>|AB|=6
故P點(diǎn)的軌跡為以A和B為焦點(diǎn)的橢圓,且a=5,c=3,所以b2=a2-c2=16
所以動(dòng)員圓心的方程為
故答案為:
點(diǎn)評(píng):本題考查兩圓的位置關(guān)系的應(yīng)用和定義法求軌跡方程,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:(x-3)2+y2=2,點(diǎn)P是拋物線C:y2=4x上的動(dòng)點(diǎn),過點(diǎn)P作圓A的兩條切線,則兩切線夾角的最大值為
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:(x+3)2+y2=100,圓A內(nèi)一定點(diǎn)B(3,0),圓P過點(diǎn)B且與圓A內(nèi)切,則圓心P的軌跡方程是
x2
25
+
y2
16
=1
x2
25
+
y2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:(x+3)2+y2=1,及圓B:(x-3)2+y2=81,動(dòng)圓P與圓A外切,與圓B內(nèi)切,則動(dòng)圓圓心P的軌跡方程為
x2
25
+
y2
16
=1
x2
25
+
y2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓A:(x+3)2+y2=1,及圓B:(x-3)2+y2=81,動(dòng)圓P與圓A外切,與圓B內(nèi)切,則動(dòng)圓圓心P的軌跡方程為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案