已知是函數(shù)的零點,若,則的值滿足( )
A. B. C. D.的符號不確定
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:選擇題
通過隨機(jī)詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如下的2×2列聯(lián)表:
| 男 | 女 | 總計 |
走天橋 | 40 | 20 | 60 |
走斑馬線 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由χ2=算得,
χ2=≈7.8.
以下結(jié)論正確的是( )
(A)有99%以上的把握認(rèn)為“選擇過馬路的方式與性別有關(guān)”
(B)有99%以上的把握認(rèn)為“選擇過馬路的方式與性別無關(guān)”
(C)在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別有關(guān)”
(D)在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高中數(shù)學(xué)全國各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題
已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個不同的實根,求實數(shù)的值;
(3)數(shù)列滿足,,求的整數(shù)部分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年陜西省咸陽市高考模擬考試(一)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),x?R.
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象上各點的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來的,把所得到的圖象再向左平移單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年陜西省咸陽市高考模擬考試(一)理科數(shù)學(xué)試卷(解析版) 題型:選擇題
平面向量與的夾角為60°, 則( )
A. B. C.4 D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,是圓的切線,切點為點,直線與圓交于、兩點,的角平分線交弦、于、兩點,已知,,則的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知等差數(shù)列的首項為,公差為,數(shù)列滿足,.
(1)求數(shù)列與的通項公式;
(2)記,求數(shù)列的前項和.
(注:表示與的最大值.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷1練習(xí)卷(解析版) 題型:解答題
如圖,已知橢圓的中心在坐標(biāo)原點,焦點在x軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m,直線l與橢圓相交于A,B兩個不同點.
(1)求實數(shù)m的取值范圍;
(2)證明:直線MA,MB與x軸圍成的三角形是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com