分析 由無窮等比數(shù)列的求和公式,可得S=$\frac{{a}_{2}}{1-q}$,再由等比數(shù)列的通項公式,解不等式,結(jié)合0<q<1,即可得到所求范圍.
解答 解:a2+a3+a4+…+a${\;}_{{n}_{\;}}$+…≤$\frac{{a}_{1}}{2}$,
由無窮等比數(shù)列的求和公式,可得
S=$\frac{{a}_{2}}{1-q}$≤$\frac{{a}_{1}}{2}$,
即為$\frac{{a}_{1}q}{1-q}$≤$\frac{{a}_{1}}{2}$,
即有$\frac{3q-1}{1-q}$≤0,
解得q≤$\frac{1}{3}$或q>1,
由0<q<1,可得
0<q≤$\frac{1}{3}$.
則公比q的范圍是(0,$\frac{1}{3}$].
點評 本題考查無窮等比數(shù)列的求和公式的運用,考查二次不等式的解法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{2}$ | C. | $\sqrt{2}$或2 | D. | 2$\sqrt{2}$或4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{6}$π | B. | $\frac{4}{3}$π | C. | $\frac{2}{3}$π | D. | $\frac{1}{2}$π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | $\frac{1}{3}$ | C. | -2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1,2 | B. | $1,\sqrt{2}$ | C. | $1-\frac{{\sqrt{2}}}{2},1$ | D. | $1-\frac{{\sqrt{2}}}{2},\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com