【題目】已知等比數(shù)列{an}滿足:|a2-a3|=10,a1a2a3=125.
(1) 求{an}的通項(xiàng)公式;
(2) 求證:++…+<1對任意正整數(shù)m都成立.
【答案】(1) an=5×(-1)n-2或an=5×3n-2,n∈N*.(2) 見解析.
【解析】試題分析:(1)設(shè)等比數(shù)列的公比為,結(jié)合等比數(shù)列的通項(xiàng)公式表示已知條件,解方程可求,進(jìn)而可求通項(xiàng)公式;(2)結(jié)合(1)可知 是等比數(shù)列,結(jié)合等比數(shù)列的求和公式可求 ,利用放縮法可得結(jié)果.
試題解析:(1) 由a1a2a3=125,得a=125,即a2=5.
又|a2-a3|=10,即a2|q-1|=10得q=-1或3.
所以an=5×(-1)n-2或an=5×3n-2,n∈N*.
(2) 證明:若q=-1,則++…+=-或0,所以++…+<1對任意正整數(shù)m都成立;
若q=3,則++…+=<<1,所以++…+<1對任意正整數(shù)m也都成立.
綜上,++…+<1對任意正整數(shù)m都成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi) (單位:千元)對年銷售量 (單位:t)和年利潤 (單位:千元)的影響.對近8年的年宣傳費(fèi)和年銷售量 (i=1,2,…,8)數(shù)據(jù)作了初步處理,得到右面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
(1)根據(jù)散點(diǎn)圖判斷, 與哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知這種產(chǎn)品的年利潤與的關(guān)系為.根據(jù)(2)的結(jié)果回答下列問題:
①年宣傳費(fèi)=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
②年宣傳費(fèi)為何值時(shí),年利潤的預(yù)報(bào)值最大?
附:對于一組數(shù)據(jù), …,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)寫出直線和曲線的普通方程;
(2)已知點(diǎn)為曲線上的動(dòng)點(diǎn),求到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的動(dòng)直線與圓: 交于M,N兩點(diǎn).
(Ⅰ)設(shè)線段MN的中點(diǎn)為P,求點(diǎn)P的軌跡方程;
(Ⅱ)若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若是函數(shù)的極值點(diǎn),求函數(shù)在上的最大值;
(3)在(2)的條件下,是否存在實(shí)數(shù),使得函數(shù)的圖象與函數(shù)的圖象恰有個(gè)交點(diǎn)?若存在,請求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1中,P,M,N分別為棱DD1,AB,BC的中點(diǎn).
(1)求二面角B1-MN-B的正切值.
(2)求證:PB⊥平面MNB1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+2)-1(a>0,且a≠1),g(x)=x-1.
(1)若函數(shù)y=f(x)的圖象恒過定點(diǎn)A,求點(diǎn)A的坐標(biāo);
(2)若函數(shù)F(x)=f(x)-g(x)的圖象過點(diǎn),試證明函數(shù)F(x)在x∈(1,2)上有唯一零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求函數(shù)切線斜率中的最大值;
(Ⅱ)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xln x-(x-1)(ax-a+1)(a∈R).
(1)若a=0,判斷函數(shù)f(x)的單調(diào)性;
(2)若x>1時(shí),f(x)<0恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com