13.已知向量$\overrightarrow{a}$=(2sinx,$\sqrt{3}$sinx),$\overrightarrow$=(sinx,2cosx),函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$,若不等式f(x)≤m在[0,$\frac{π}{2}$]上有解,則實數(shù)m的最小值為( 。
A.0B.-1C.2D.-2

分析 利用兩個向量的數(shù)量積的定義,三角恒等變換化簡函數(shù)f(x)的解析式,再利用正弦函數(shù)的定義域和值域,求得f(x)的范圍,可得m的最小值.

解答 解:∵函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$=4sin2x+4$\sqrt{3}$sinxcosx=2-2cos2x+2$\sqrt{3}$sin2x=4sin(2x-$\frac{π}{6}$)+2,
在[0,$\frac{π}{2}$]上,2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],∴4sin(2x-$\frac{π}{6}$)∈[-2,4],∴f(x)∈[0,6].
若不等式f(x)≤m在[0,$\frac{π}{2}$]上有解,則m≥0,
故選:A.

點評 本題主要考查兩個向量的數(shù)量積的定義,三角恒等變換,正弦函數(shù)的定義域和值域,函數(shù)的能成立問題,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.計算:sin(-$\frac{16π}{3}$)=$\frac{\sqrt{3}}{2}$,cos(-$\frac{8π}{3}$)=$-\frac{1}{2}$,tan(-$\frac{17}{4}$π)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.平面內(nèi)動點P(x,y)與兩定點A(-2,0)、B(2,0)連線的斜率之積等于-$\frac{1}{3}$,若點P的軌跡為曲線E,過點Q(-1,0)作斜率不為零的直線CD交曲線E于C、D兩點
(Ⅰ)求曲線E的方程
(Ⅱ)求證:AC⊥AD
(Ⅲ)求四邊形ACOD面積的最大值(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知E,F(xiàn)為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(0<a<b)$的左右焦點,拋物線y2=2px(p>0)與雙曲線有公共的焦點F,且與雙曲線交于A、B不同兩點,若5|AF|=4|EF|,則雙曲線的離心率為(  )
A.$4+\sqrt{7}$B.$4-\sqrt{3}$C.$4+\sqrt{3}$D.$4-\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,D是AC中點,延長AB至E,BE=AB,連接DE交BC于點F,則$\overrightarrow{AF}$=( 。
A.$\frac{2}{5}$$\overrightarrow{AB}$+$\frac{3}{5}$$\overrightarrow{AC}$B.$\frac{3}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$C.$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$D.$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1、F2,若在C上存在一點P,使得PO=$\frac{1}{2}$|F1F2|(O為坐標原點),且直線OP的斜率為$\frac{4}{3}$,則,雙曲線C的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.三棱錐A-BCD的所有棱長均為6,點P在AC上,且AP=2PC,過P作四面體的截面,使截面平行于直線AB和CD,則該截面的周長為( 。
A.16B.12C.10D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某四棱錐的三視圖如圖所示,其俯視圖為等腰直角三角形,則該四棱錐的體積為( 。
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{4}{3}$C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知a、b∈R,且2ab+2a2+2b2-9=0,若M為a2+b2的最小值,則約束條件$\left\{\begin{array}{l}0≤y≤\sqrt{{M^2}-{x^2}}\\ x-y≥-M\\ x+y≤M.\end{array}\right.$所確定的平面區(qū)域內(nèi)整點(橫坐標縱坐標均為整數(shù)的點)的個數(shù)為( 。
A.9B.13C.16D.18

查看答案和解析>>

同步練習冊答案