【題目】已知某工廠每天固定成本是4萬元,每生產(chǎn)一件產(chǎn)品成本增加100元,工廠每件產(chǎn)品的出廠價定為元時,生產(chǎn)件產(chǎn)品的銷售收入是(元),為每天生產(chǎn)件產(chǎn)品的平均利潤(平均利潤=總利潤/總產(chǎn)量).銷售商從工廠每件元進貨后又以每件元銷售, ,其中為最高限價, 為銷售樂觀系數(shù),據(jù)市場調(diào)查, 是由當是, 的比例中項時來確定.
(1)每天生產(chǎn)量為多少時,平均利潤取得最大值?并求的最大值;
(2)求樂觀系數(shù)的值;
(3)若,當廠家平均利潤最大時,求與的值.
【答案】(1)400,200;(2);(3), .
【解析】試題分析:(1)先求出總利潤=,依據(jù)(平均利潤=總利潤/總產(chǎn)量)可得,利用均值不等式得最大利潤;(2)由已知得,結(jié)合比例中項的概念可得,兩邊同時除以將等式化為的方程,解出方程即可;(3)利用平均成本 平均利潤,結(jié)合廠家平均利潤最大時(由(1)的結(jié)果)可得的值,利用可得的值.
試題解析:(1)依題意總利潤=,
=,
,
此時, ,
即,每天生產(chǎn)量為400件時,平均利潤最大,最大值為200元 .
(2)由得, 是的比例中項,
,
兩邊除以得,
解得.
(3)廠家平均利潤最大, 元,
每件產(chǎn)品的毛利為, ,
元, (元),元.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE∥平面ADP;
(2)求直線BE與平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1:y=kx﹣1與雙曲線x2﹣y2=1的左支交于A,B兩點.
(1)求斜率k的取值范圍;
(2)若直線l2經(jīng)過點P(﹣2,0)及線段AB的中點Q且l2在y軸上截距為﹣16,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別是橢圓的長軸與短軸的一個端點, 是橢圓的左、右焦點,以點為圓心、3為半徑的圓與以點為圓心、1為半徑的圓的交點在橢圓上,且.
(1)求橢圓的方程;
(2)設為橢圓上一點,直線與軸交于點,直線與軸交于點,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的一個短軸端點及兩個焦點構成的三角形的面積為,圓C方程為.
(1)求橢圓及圓C的方程;
(2)過原點O作直線l與圓C交于A,B兩點,若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以Ox軸為始邊作兩個銳角α,β,它們的終邊分別交單位圓于A,B兩點.已知A,B兩點的橫坐標分別是 , .
(1)求tan(α+β)的值;
(2)求α+2β的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com