精英家教網 > 高中數學 > 題目詳情
若函數f(x)=x
13
,則不等式f-1(x)>f(x)的解集是
(-1,0)∪(1,+∞)
(-1,0)∪(1,+∞)
分析:先求出函數f(x)=x
1
3
的反函數f-1(x),然后代入不等式f-1(x)>f(x),兩邊同取三次方,移項、因式分解可求出不等式的解集.
解答:解:∵f(x)=y=x
1
3
,x∈R
∴y3=x,x與y互換得y=x3;
∴f-1(x)=x3,
∵f-1(x)>f(x)
∴x3x
1
3
即x9>x
∴x(x8-1)=x(x4-1)(x4+1)=x(x2-1)(x2+1)(x4+1)=x(x-1)(x+1)(x2+1)(x4+1)>0
∴x∈(-1,0)∪(1,+∞)
故答案為:(-1,0)∪(1,+∞)
點評:本題主要考查了反函數,以及不等式的解法,解題的關鍵就是因式分解,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

探究函數f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定相應的x的值,列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
 y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
請觀察表中y值隨x值變化的特點,完成下列問題:
(1)若x1x2=4,則f(x1
=
=
f(x2)(請?zhí)顚憽埃荆?,<”號);若函數f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減,則在區(qū)間
(2,+∞)
(2,+∞)
上遞增;
(2)當x=
2
2
時,f(x)=x+
4
x
,(x>0)的最小值為
4
4
;
(3)試用定義證明f(x)=x+
4
x
,在區(qū)間(0,2)上單調遞減.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=
x1+|x|
,下列結論正確的是

①f(x)在(-∞,+∞)上不是單調函數
②?m∈(0,1),使得方程f(x)=m有兩個不等的實數解;
③?k∈(1,+∞),使得函數g(x)=f(x)-kx在R上有三個零點;
④?x1,x2∈R,若x1≠x2,則f(x1)≠f(x2).

查看答案和解析>>

科目:高中數學 來源: 題型:

研究函數f(x)=
x
1+|x|
(x∈R)
的性質,分別給出下面結論(  )
①若x1=-x2,則一定有f(x1)=-f(x2);
②函數f(x)在定義域上是減函數;
③函數f(x)的值域為(-1,1);
④若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立,
其中正確的結論有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足an>0,a1=m,其中0<m<1,函數f(x)=
x
1+x

(1)若數列{an}滿足an+1=f(an),(n≥1,n∈N),求an
(2)若數列{an}滿足an+1≤f(an),(n≥1,n∈N).數列{bn}滿足bn=
an
n+1
,求證:b1+b2+…+bn<1.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=loga(x2-ax+5)(a>0且a≠1)滿足對任意的x1,x2,當x1x2
a
2
時f(x2)-f(x1)<0,則實數a的取值范圍是(  )
A、a>1
B、0<a<2
5
C、0<a<1
D、1<a<2
5

查看答案和解析>>

同步練習冊答案