分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即先確定z的最優(yōu)解,然后確定a的值即可.
解答 解:作出不等式對應(yīng)的平面區(qū)域,(陰影部分)
由z=2x+y,得y=-2x+z,
平移直線y=-2x+z,由圖象可知當(dāng)直線y=-2x+z經(jīng)過點B時,直線y=-2x+z的截距最小,此時z最小為0,即2x+y=0.
由$\left\{\begin{array}{l}{2x+y=0}\\{x=1}\end{array}\right.$,解$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$,
即B(1,-2),
∵點B也在直線y=a(x-3)上,即-2=-2a,
解得a=1.
故答案為:1.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一的實數(shù)λ,使$\overrightarrow$=$λ\overrightarrow{a}$ | |
B. | 若p∧q為假命題,則p,q均為假命題 | |
C. | 命題“?x∈R,都有2x≥2x”的否定為“?x0∈R,使得2x≤2x0” | |
D. | “a=0”是“直線(a+1)x+a2y-3=0與2x+ay-2a-1=0平行”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com