【題目】已知為等差數(shù)列,為等比數(shù)列,

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)記的前項(xiàng)和為,求證:

(Ⅲ)對(duì)任意的正整數(shù),設(shè)求數(shù)列的前項(xiàng)和.

【答案】(Ⅰ),;(Ⅱ)證明見(jiàn)解析;(Ⅲ).

【解析】

(Ⅰ)由題意分別求得數(shù)列的公差、公比,然后利用等差、等比數(shù)列的通項(xiàng)公式得到結(jié)果;

(Ⅱ)利用(Ⅰ)的結(jié)論首先求得數(shù)列n項(xiàng)和,然后利用作差法證明即可;

(Ⅲ)分類討論n為奇數(shù)和偶數(shù)時(shí)數(shù)列的通項(xiàng)公式,然后分別利用指數(shù)型裂項(xiàng)求和和錯(cuò)位相減求和計(jì)算的值,據(jù)此進(jìn)一步計(jì)算數(shù)列的前2n項(xiàng)和即可.

()設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為q.

,可得d=1.

從而的通項(xiàng)公式為.

,

q≠0,可得,解得q=2,

從而的通項(xiàng)公式為.

()證明:由()可得,

,

從而,

所以.

()當(dāng)n為奇數(shù)時(shí),,

當(dāng)n為偶數(shù)時(shí),,

對(duì)任意的正整數(shù)n,有,

由①得

由①②得,

由于

從而得:.

因此,.

所以,數(shù)列的前2n項(xiàng)和為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市對(duì)一項(xiàng)惠民市政工程滿意程度(分值:分)進(jìn)行網(wǎng)上調(diào)查,有2000位市民參加了投票,經(jīng)統(tǒng)計(jì),得到如下頻率分布直方圖(部分圖):

現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機(jī)抽取位市民召開(kāi)座談會(huì),其中滿意程度在的有5人.

1)求的值,并填寫(xiě)下表(2000位參與投票分?jǐn)?shù)和人數(shù)分布統(tǒng)計(jì));

滿意程度(分?jǐn)?shù))

人數(shù)

2)求市民投票滿意程度的平均分(各分?jǐn)?shù)段取中點(diǎn)值);

3)若滿意程度在5人中恰有2位為女性,座談會(huì)將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】CES是世界上最大的消費(fèi)電子技術(shù)展,也是全球最大的消費(fèi)技術(shù)產(chǎn)業(yè)盛會(huì).2020CES消費(fèi)電子展于202017日—10日在美國(guó)拉斯維加斯舉辦.在這次CES消費(fèi)電子展上,我國(guó)某企業(yè)發(fā)布了全球首款彩色水墨屏閱讀手機(jī),驚艷了全場(chǎng).若該公司從7名員工中選出3名員工負(fù)責(zé)接待工作(3名員工的工作視為相同的工作),再選出2名員工分別在上午、下午講解該款手機(jī)性能,若其中甲和乙至多有1人負(fù)責(zé)接待工作,則不同的安排方案共有__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的內(nèi)角,的對(duì)邊分別為,,.設(shè)為線段上一點(diǎn),,有下列條件:

;②;③.

請(qǐng)從以上三個(gè)條件中任選兩個(gè),求的大小和的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎(jiǎng)促銷活動(dòng),若顧客一次消費(fèi)達(dá)到400元?jiǎng)t可參加一次抽獎(jiǎng)活動(dòng),超市設(shè)計(jì)了兩種抽獎(jiǎng)方案.

方案一:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎(jiǎng),且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎(jiǎng)機(jī)會(huì),且都按方案一抽獎(jiǎng),試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎(jiǎng)機(jī)會(huì).

①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得返金券的數(shù)學(xué)期望;

②為了吸引顧客消費(fèi),讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎(jiǎng)方案進(jìn)行促銷活動(dòng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的首項(xiàng)a1=1,前n項(xiàng)和為Sn.設(shè)λk是常數(shù),若對(duì)一切正整數(shù)n,均有成立,則稱此數(shù)列為“λ~k數(shù)列.

1)若等差數(shù)列“λ~1”數(shù)列,求λ的值;

2)若數(shù)列數(shù)列,且an0,求數(shù)列的通項(xiàng)公式;

3)對(duì)于給定的λ,是否存在三個(gè)不同的數(shù)列“λ~3”數(shù)列,且an≥0?若存在,求λ的取值范圍;若不存在,說(shuō)明理由,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在等腰梯形中,,.,交于點(diǎn).沿線段折起,使得點(diǎn)在平面內(nèi)的投影恰好是點(diǎn),如圖.

1)若點(diǎn)為棱上任意一點(diǎn),證明:平面平面.

2)在棱上是否存在一點(diǎn),使得三棱錐的體積為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,,且,的中點(diǎn).

(1)求證:平面平面;

(2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是拋物線上的兩個(gè)不同的點(diǎn),是坐標(biāo)原點(diǎn),若直線的斜率之積為,則下列結(jié)論正確的是(

A.

B.為直徑的圓面積的最小值為

C.直線過(guò)拋物線的焦點(diǎn)

D.點(diǎn)到直線的距離不大于

查看答案和解析>>

同步練習(xí)冊(cè)答案