【題目】已知函數(shù)f(x)=|x2+ax+b|在區(qū)間[0,c]內的最大值為M(a,b∈R,c>0位常數(shù))且存在實數(shù)a,b,使得M取最小值2,則a+b+c=

【答案】2
【解析】解:函數(shù)y=x2+ax+b是二次函數(shù),

∴函數(shù)f(x)=|x2+ax+b|在區(qū)間[0,c]內的最大值為M在端點處或x=﹣ 處取得.

若在x=0處取得,則b=±2,

若在x=﹣ 處取得,則 ,

若在x=c處取得,則|c2+ac+b|=2.

若b=2,則頂點處的函數(shù)值不為2,應為0,符合要求,

若b=﹣2則頂點處的函數(shù)值的絕對值大于2,不成立.

由此推斷b= ,即有b=2,則a+c=0,

可得a+b+c=2.

所以答案是:2.

【考點精析】本題主要考查了函數(shù)的最值及其幾何意義的相關知識點,需要掌握利用二次函數(shù)的性質(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調性的判斷函數(shù)的最大(。┲挡拍苷_解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,頂角D1在底面ABCD內的射影恰好為點C.
(1)求證:AD1⊥BC;
(2)若直線DD1與直線AB所成角為 ,求平面ABC1D1與平面ABCD所成角(銳角)的余弦值函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖所示,在空間直角坐標系xOy平面內,若函數(shù)f(x)= 的圖象與x軸圍成一個封閉的區(qū)域A,將區(qū)域A沿z軸的正方向平移4個單位,得到幾何體如圖一,現(xiàn)有一個與之等高的圓柱如圖二,其底面積與區(qū)域A的面積相等,則此圓柱的體積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) f(x)=ex(ex﹣a)﹣a2x.
(1)討論 f(x)的單調性;
(2)若f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐A﹣BCD的所有棱長都相等,若AB與平面α所成角等于 ,則平面ACD與平面α所成角的正弦值的取值范圍是(
A.[ , ]
B.[ ,1]
C.[ , + ]
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項都是正數(shù),a1=1,an+12=an2+ (n∈N*
(1)求證: ≤an<2(n≥2)
(2)求證:12(a2﹣a1)+22(a3﹣a2)+…+n2(an+1﹣an)> (n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)設a>1,試討論f(x)單調性;
(2)設g(x)=x2﹣2bx+4,當 時,任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項am , an , 使得 =4a1 , 則 + 的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,設點M(x0 , y0)是橢圓C: +y2=1上一點,從原點O向圓M:(x﹣x02+(y﹣y02=r2作兩條切線分別與橢圓C交于點P,Q.直線OP,OQ的斜率分別記為k1 , k2
(1)若圓M與x軸相切于橢圓C的右焦點,求圓M的方程;
(2)若r= ,①求證:k1k2=﹣ ;②求OPOQ的最大值.

查看答案和解析>>

同步練習冊答案