【題目】如圖,在棱長(zhǎng)為1的正方體中,P為線段上的動(dòng)點(diǎn),下列說(shuō)法正確的是(

A.對(duì)任意點(diǎn)P平面

B.三棱錐的體積為

C.線段DP長(zhǎng)度的最小值為

D.存在點(diǎn)P,使得DP與平面所成角的大小為

【答案】ABC

【解析】

對(duì)四個(gè)選項(xiàng)逐一分析,

對(duì)于A:平面平面,可得平面;

對(duì)于B:三棱錐的高均為1,底面的面積為,根據(jù)錐體體積公式計(jì)算即可作出判斷;

對(duì)于C:當(dāng)點(diǎn)P的中點(diǎn)時(shí),DP最小,此時(shí),在中利用勾股定理進(jìn)行計(jì)算可得出DP的最小值;

對(duì)于D:設(shè)點(diǎn)P在平面上的投影為點(diǎn)Q,DP與平面所成的角,,,而,所以DP與平面所成角的正弦值的取值范圍是,而,從而作出判斷.

由題可知,正方體的面對(duì)角線長(zhǎng)度為,

對(duì)于A:分別連接、、、、,易得平面平面平面,故對(duì)任意點(diǎn)P平面,故正確;

對(duì)于B:分別連接,無(wú)論點(diǎn)P在哪個(gè)位置,三棱錐的高均為1,底面的面積為,所以三棱錐的體積為,故正確;

對(duì)于C:線段DP中,當(dāng)點(diǎn)P的中點(diǎn)時(shí),DP最小,此時(shí),在中,,

DP的最小值為,故正確;

對(duì)于D:點(diǎn)P在平面上的投影在線段上,設(shè)點(diǎn)P的投影為點(diǎn)Q,則DP與平面所成的角,,,

,所以DP與平面所成角的正弦值的取值范圍是,而

所以不存在點(diǎn)P,使得DP與平面所成角的大小為,故錯(cuò)誤.

故選:ABC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐中,已知,,的平分線,且棱錐的三個(gè)側(cè)面與底面都成角,求棱錐的側(cè)面積與體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中e是自然對(duì)數(shù)的底數(shù),

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè),討論函數(shù)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為

1)寫(xiě)出直線和曲線的直角坐標(biāo)方程;

2)過(guò)動(dòng)點(diǎn)且平行于的直線交曲線兩點(diǎn),若,求動(dòng)點(diǎn)到直線的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的右焦點(diǎn)為,左頂點(diǎn)為,線段的中點(diǎn)為,圓過(guò)點(diǎn),且與交于, 是等腰直角三角形,則圓的標(biāo)準(zhǔn)方程是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,,求的最大值;

2)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程:為參數(shù)),以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸(取相同單位長(zhǎng)度)建立極坐標(biāo)系,圓的極坐標(biāo)方程為:

1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;

2)求圓上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了止損,某地一水果店老板利用抖音直播賣貨,經(jīng)過(guò)一段時(shí)間對(duì)一種水果的銷售情況進(jìn)行統(tǒng)計(jì),得到天的數(shù)據(jù)如下:

銷售單價(jià)(元/

銷售量

1)建立關(guān)于的回歸直線方程;

2)該水果店開(kāi)展促銷活動(dòng),當(dāng)該水果銷售單價(jià)為/時(shí),其銷售量達(dá)到,若由回歸直線方程得到的預(yù)測(cè)數(shù)據(jù)與此次促銷活動(dòng)的實(shí)際數(shù)據(jù)之差的絕對(duì)值不超過(guò),則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn):(1)中得到的回歸直線方程是否理想?

3)根據(jù)(1)的結(jié)果,若該水果成本是/,銷售單價(jià)為何值時(shí)(銷售單價(jià)不超過(guò)/),該水果店利潤(rùn)的預(yù)計(jì)值最大?

參考公式:回歸直線方程,其中,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將數(shù)字1,2,3,4,5這五個(gè)數(shù)隨機(jī)排成一列組成一個(gè)數(shù)列,則該數(shù)列為先減后增數(shù)列的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案