已知函數(shù)f(x)=alnx+
2
x
+x
,其中a∈R.
(Ⅰ)若a=1,求函數(shù)f(x)的極值點;
(Ⅱ)若f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求實數(shù)a的取值范圍.
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:
分析:(1)先求函數(shù)的導(dǎo)函數(shù)f′(x),再解不等式f′(x)>0,得函數(shù)的單調(diào)增區(qū)間,解不等式f′(x)<0得函數(shù)的單調(diào)減區(qū)間,最后由極值定義求得函數(shù)極值.
(2)通過已知條件,求出函數(shù)的導(dǎo)數(shù),轉(zhuǎn)化導(dǎo)數(shù)大于等于0恒成立,得到a的表達式,求出a的最小值即可.
解答: 解:(1)當x=1時,f(x)=lnx+
2
x
+x
,(x>0),f′(x)=
1
x
-
2
x2
+1
,
∴f(x)的單調(diào)遞減區(qū)間為(0,1),單調(diào)增區(qū)間為(1,+∞),
∴當x=1時,f(x)有極小值.
(2)由函數(shù)f(x)=alnx+
2
x
+x
,得f′(x)=
a
x
-
2
x2
+1
,
若函數(shù)f(x)為[1,+∞)上的單調(diào)增函數(shù),則f′(x)≥0在[1,+∞)上恒成立,
即不等式
a
x
-
2
x2
+1≥0
在[1,+∞)上恒成立.也即a≥
2
x
-x
在[1,+∞)上恒成立.
又g(x)=
2
x
-x
在[1,+∞)上為減函數(shù),g(x)max=g(1)=1.所以a≥1.
點評:本題考查函數(shù)與導(dǎo)函數(shù)的關(guān)系,函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,通過函數(shù)的導(dǎo)數(shù)求解函數(shù)極值,考查轉(zhuǎn)化思想與計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、2
B、
4
3
C、4
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=x2(x-a),若?x∈[1,2],使不等式f(x)<-1成立,求參數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:cos2
π
2
-α)-sin(α-2π)sin(π+α)-sin2(-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:
x2+1
-ax<1
,(a>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

唐徠回中隨機抽取部分新生調(diào)查其上學(xué)所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖,其中,上學(xué)所需時間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100],
(1)求直方圖中的x的值;
(2)如果上學(xué)所需時間不少于1小時的學(xué)生可申請住校,請估計學(xué)校600名新生中有多少名學(xué)生可以申請住校;
(3)學(xué)校規(guī)定上學(xué)時間在[0,20)的學(xué)生只能步行,上學(xué)時間在[20,40)的學(xué)生只能騎自行車,現(xiàn)在用分層抽樣方法從[0,20)和[20,40)中抽取6名學(xué)生,再從這6名學(xué)生中任意抽取兩人,問這兩人都騎自行車的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)共有100萬人,現(xiàn)從中隨機抽查800人,發(fā)現(xiàn)有700人不吸煙,100人吸煙.這100位吸煙者年均煙草消費支出情況的頻率分布直方圖如圖.將頻率視為概率,回答下列問題:
(Ⅰ)在該地區(qū)隨機抽取3個人,求其中至少1人吸煙的概率;
(Ⅱ)據(jù)統(tǒng)計,煙草消費稅大約為煙草消費支出的40%,該地區(qū)為居民支付因吸煙導(dǎo)致的疾病治療等各種費用年均約為18800萬元.問:當?shù)責(zé)煵菹M稅是否足以支付當?shù)鼐用褚蛭鼰煂?dǎo)致的疾病治療等各種費用?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的方程x2+tx-1=0的兩根為α,β(α<β,函數(shù)f(x)=
2x+t
x2+1
).
(1)用t表示f(α)+f(β);
(2)證明:f(x)在[α,β]上是增函數(shù);
(3)對任意正數(shù)x1,x2,求證:-2β<f(
x1α+x2β
x1+x2
)+f(
x1β+x2α
x1+x2
)<-2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點P0(x0,y0)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)外,過點P0作該橢圓的兩條切線的切點分別為P1,P2,則切點弦P1P2所在直線的方程為
x0x
a2
+
y0y
b2
=1.那么對于雙曲線,類似地,可以得到一個正確的命題為
 

查看答案和解析>>

同步練習(xí)冊答案