17.設(shè)數(shù)列{an}是等差數(shù)列,且a2=-8,a15=5,Sn是數(shù)列{an}的前n項(xiàng)和,則不正確的是( 。
A.S10≤S9B.S10<S11C.S10=S9D.S10=S11

分析 設(shè)等差數(shù)列{an}的公差為d,由a2=-8,a15=5,可得a1+d=-8,a1+14d=5,解出利用數(shù)列的單調(diào)性即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a2=-8,a15=5,
∴a1+d=-8,a1+14d=5,
解得a1=-9,d=1.
∴an=-9+(n-1)=n-10.
令an=0,解得n=10.
∴a10=0,
d=1>0,∴數(shù)列{an}單調(diào)遞增.
∴S10=S9,S10<S11
因此A,B,C正確,D不正確.
故選:D.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知定義在[0,1]上的函數(shù)y=f(x),f′(x)為f(x)的導(dǎo)函數(shù),f(x)圖象如圖,對滿足0<x1<x2<1的任意x1,x2,給出下列結(jié)論:
①f(x1)-f(x2)>x1-x2;
②x2f(x1)>x1f(x2);
③$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$);
④[f′(x1)-f′(x2)]•(x1-x2)>0.
則下列結(jié)論中正確的是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知公差為d的等差數(shù)列{an}的前n項(xiàng)和為Sn,若$\frac{s_5}{s_3}=2$,則$\frac{{a}_{5}}{{a}_{3}}$的值為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={1,2},B={1,2,3},寫出分別從集合A和B中隨機(jī)取一個數(shù)的所有可能結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,若acosB-bcosA=$\frac{3}{5}$c,則$\frac{tanA}{tanB}$ 的值為( 。
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.電視臺與某廣告公司簽約播放兩部影片集,其中影片集甲每集播放時間為19分鐘(不含廣告時間,下同),廣告時間為1分鐘,收視觀眾為60萬;影片集乙每集播放時間為7分鐘,廣告時間為1分鐘,收視觀眾為20萬,廣告公司規(guī)定每周至少有7分鐘廣告,而電視臺每周只能為該公司提供不多于80分鐘的節(jié)目時間(含廣告時間).
(Ⅰ)問電視臺每周應(yīng)播放兩部影片集各多少集,才能使收視觀眾最多;
(Ⅱ)在獲得最多收視觀眾的情況下,影片集甲、乙每集可分別給廣告公司帶來a和b(萬元)的效益,若廣告公司本周共獲得3萬元的效益,記S=$\frac{16}{a}$+$\frac{10}$為效益調(diào)和指數(shù)(單位:萬元),求效益調(diào)和指數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.《九章算術(shù)》第三章“衰分”介紹比例分配問題:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(即百分比)為“衰分比”.如:甲、乙、丙、丁分別分得100,60,36,21.6,遞減的比例為40%,那么“衰分比”就等于40%,今共有糧a(a>0)石,按甲、乙、丙、丁的順序進(jìn)行“衰分”,已知丙分得36石,乙、丁所得之和為75石,則“衰分比”與a的值分別是( 。
A.75%,$\frac{525}{4}$B.25%,$\frac{525}{4}$C.75%,175D.25%,175

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)y=|x-4|-|x-6|,則當(dāng)其取最小值時,自變量x的取值范圍是( 。
A.[4,6]B.[6,+∞)C.(-∞,4]D.(4,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)全集U={x∈N|x≤10},集合A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7}求:
(1)A∪B; A∩B
(2)(∁UA)∩(∁UB),A∩B∩C.

查看答案和解析>>

同步練習(xí)冊答案