8.化簡:
sin($\frac{π}{4}$-3x)cos($\frac{π}{3}$-3x)-cos($\frac{π}{6}$+3x)sin($\frac{π}{4}$+3x)

分析 由條件利用誘導(dǎo)公式、兩角和的正弦公式化簡所給的式子,可得結(jié)果.

解答 解:sin($\frac{π}{4}$-3x)cos($\frac{π}{3}$-3x)-cos($\frac{π}{6}$+3x)sin($\frac{π}{4}$+3x)
=sin($\frac{π}{4}$-3x)cos($\frac{π}{3}$-3x)-sin($\frac{π}{3}$-3x)cos($\frac{π}{4}$-3x)
=sin[($\frac{π}{4}$-3x)-($\frac{π}{3}$-3x)]=sin(-$\frac{π}{12}$)
=-sin$\frac{π}{12}$.

點評 本題主要考查誘導(dǎo)公式、兩角和的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=${log}_{2}\frac{1}{3}$,b=lg5,c=ln$\sqrt{e}$,則a、b、c的大小關(guān)系為(  )
A.<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x-2|-|x+1|.
(Ⅰ)若f(x)≤a恒成立,求a的取值范圍;
(Ⅱ)解不等式f(x)≥x2-2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)y=f(x2-2x+4)的定義域(-2,2),求f(x2-2x-12)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l1與l2:x+y-1=0平行,且l1與l2的距離為$\sqrt{2}$,求l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知動點P(x,y)滿足$\left\{\begin{array}{l}{2x+y≤2}\\{x≥0}\\{(x+\sqrt{{x}^{2}+1})(y+\sqrt{{y}^{2}+1})≥1}\end{array}\right.$,則x2+y2+2y的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,在等腰直角三角形ABD中,∠BAD=90°,且等腰直角三角形ABD與等邊三角形CBD所在平面垂直,E為BC的中點,則AE與平面BCD所成角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若關(guān)于x的方程x3-3x+m=0在[0,2]上有根,則實數(shù)m的取值范圍[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}的前n項和為Sn,且2Sn=(n+2)an-1(n∈N*).
(1)求a1的值,并用an-1表示an;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)Tn=$\frac{1}{{a}_{1}{a}_{3}}$+$\frac{1}{{a}_{2}{a}_{4}}$+$\frac{1}{{a}_{3}{a}_{5}}$+…+$\frac{1}{{a}_{n}{a}_{n+2}}$,求證:Tn<$\frac{5}{3}$.

查看答案和解析>>

同步練習(xí)冊答案