6.已知f(x)=sinωx(ω>0)滿足f(x+2)=f(x),f($\frac{7}{2}$)的值為-1.

分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,可得ω的值,再利用周期性求得f($\frac{7}{2}$)的值.

解答 解:由f(x)=sinωx(ω>0)滿足f(x+2)=f(x),
可得函數(shù)的周期為2,即$\frac{2π}{ω}$=2,求得ω=π,故f(x)=sinπx.
可得f($\frac{7}{2}$)=sin($\frac{7}{2}$π)=sin(-$\frac{π}{2}$)=-sin$\frac{π}{2}$=-1,
故答案為:-1.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的首項為a1=5,前n項和為Sn,且Sn+1=2Sn+n+5,求{an}通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=$\left\{\begin{array}{l}{2{a}_{n}+2n-2,n為奇數(shù)}\\{-{a}_{n}-n,n為偶數(shù)}\end{array}\right.$,數(shù)列{an}的前n項和為Sn,bn=a2n,其中n∈N*
(Ⅰ) 求a2+a3的值;
(Ⅱ) 證明:數(shù)列{bn}為等比數(shù)列;
(Ⅲ) 是否存在n(n∈N*),使得數(shù)列{an}前2n+1項的和S2n+1≥-$\frac{23}{2}$恒成立,若存在,求出所有的n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=sinωxcosωx+$\sqrt{3}$cos2ωx+$\frac{3}{2}$(ω>0),其兩條相鄰對稱軸之間的距離等于$\frac{π}{2}$.
(Ⅰ)求f(x)的解析式
(Ⅱ)若對?x∈[-$\frac{π}{12}$,0],都有|f(x)-m|≤1,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sin($\frac{π}{3}$-C)•sinC=$\frac{\sqrt{3}-1}{4}$,求∠C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知在△ABC中,2sinA=$\sqrt{3}$sinC-sinB,則A的取值范圍為$[\frac{π}{6},\frac{π}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.a(chǎn),b≥1,a≠b,下列各數(shù)中最大的是( 。
A.$\frac{1}{2}$(a+b)B.$\frac{2ab}{a+b}$C.$\frac{1}{2}$($\frac{1}{a}$+$\frac{1}$)D.$\sqrt{ab}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知實數(shù)x1,x2,…,x10滿足$\sum_{i=1}^{10}$|xi-1|≤4,$\sum_{i=1}^{10}$|xi-2|≤6,求x1,x2,…,x10的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在如圖所示的正方體ABCD-A1B1C1D1中,
(Ⅰ)求證:平面A1BC1⊥平面A1B1CD;
(Ⅱ)求直線A1B與平面A1B1CD所成角的大。

查看答案和解析>>

同步練習(xí)冊答案