某次數(shù)學(xué)考試中,其中一個(gè)小組的成績(jī)是:55,89,69,73,81,56,90,74,82.試畫(huà)一個(gè)程序框圖:程序中用S(i)表示第i個(gè)學(xué)生的成績(jī),先逐個(gè)輸入S(i)( i=1,2,…),然后從這些成績(jī)中搜索出小于75的成績(jī).(注意:要求程序中必須含有循環(huán)結(jié)構(gòu))
考點(diǎn):設(shè)計(jì)程序框圖解決實(shí)際問(wèn)題
專(zhuān)題:算法和程序框圖
分析:由已知中該小組中共有9名同學(xué),故可以設(shè)計(jì)一個(gè)循環(huán)共循環(huán)9次,每次輸出一個(gè)成績(jī),循環(huán)體內(nèi)包括一個(gè)單分析結(jié)構(gòu),滿足小于75的條件時(shí),計(jì)數(shù)器值增加1,進(jìn)而可得答案.
解答: 解:滿足條件的程序框圖如下圖所示:
點(diǎn)評(píng):本題的實(shí)質(zhì)是累加滿足條件的數(shù)據(jù),可利用循環(huán)語(yǔ)句來(lái)實(shí)現(xiàn)數(shù)值的累加(乘)常分如下步驟:①觀察S的表達(dá)式分析,循環(huán)的初值、終值、步長(zhǎng)為②觀察每次累加的值的通項(xiàng)公式③在循環(huán)前給累加器和循環(huán)變量賦初值,累加器的初值為0,累乘器的初值為1,環(huán)變量的初值同累加(乘)第一項(xiàng)的相關(guān)初值④在循環(huán)體中要先計(jì)算累加(乘)值,如果累加(乘)值比較簡(jiǎn)單可以省略此步,累加(乘),給循環(huán)變量加步長(zhǎng)⑤輸出累加(乘)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(f(x),1),向量
b
=(2x+|x|-1,2|x|),且滿足
a
b

(1)若f(x)=
15
4
,求x的值;
(2)若2tf(2t)+mf(t)≥0對(duì)于t∈[2,4]恒成立,求實(shí)數(shù)m的取值范圍.
(3)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a,b∈{-2,-1,1,2}
(1)求y=ax+b傾斜角為銳角的概率.
(2)求直線y=ax+b與圓x2+y2=1有公共點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+4lnx的極值點(diǎn)為1和2.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)在區(qū)間(0,3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=-
4
5
,α為第二象限角.
(1)求sin(α+
π
4
)的值.        
(2)求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2+2x分別在x=-1和x=
2
3
處取得極值.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的圖象在x=
1
2
處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x≥1,x2≥1”的否定為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=3,則tan(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若平面向量
a
b
共線,那么
a
b
方向相同”的逆否命題是
 
命題(用真或假作答).

查看答案和解析>>

同步練習(xí)冊(cè)答案