【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若將其圖象向右平移 個(gè)單位后得到的圖象關(guān)于原點(diǎn)對(duì)稱,則函數(shù)f(x)的圖象( )
A.關(guān)于直線x= 對(duì)稱
B.關(guān)于直線x= 對(duì)稱
C.關(guān)于點(diǎn)( ,0)對(duì)稱
D.關(guān)于點(diǎn)( ,0)對(duì)稱
【答案】B
【解析】解:∵函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,
∴T= =π,解得ω=2,
即f(x)=sin(2x+φ),
將其圖象向右平移 個(gè)單位后得到y(tǒng)=sin[2(x﹣ )+φ]=sin(2x+φ﹣ ),
若此時(shí)函數(shù)關(guān)于原點(diǎn)對(duì)稱,
則φ﹣ =kπ,即φ= +kπ,k∈Z,
∵|φ|< ,
∴當(dāng)k=﹣1時(shí),φ=- .
即f(x)=sin(2x- ).
由2x- = ,
解得x= + ,k∈Z,
故當(dāng)k=0時(shí),函數(shù)的對(duì)稱軸為x= ,
故選:B
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某媒體對(duì)“男女延遲退休”這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,如表是在某單位得到的數(shù)據(jù)(人數(shù)):
(1)能否有90%以上的把握認(rèn)為對(duì)這一問題的看法與性別有關(guān)?
贊同 | 反對(duì) | 合計(jì) | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合計(jì) | 16 | 9 | 25 |
(2)從贊同“男女延遲退休”16人中選出3人進(jìn)行陳 述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率;
(3)若以這25人的樣本數(shù)據(jù)來估計(jì)整個(gè)地區(qū)的總體數(shù)據(jù),現(xiàn)從該地區(qū)(人數(shù)很多)任選5人,記贊同“男女延遲退休”的人數(shù)為X,求X的數(shù)學(xué)期望.
附:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對(duì)該店鋪中的五種商品有購買意向.已知該網(wǎng)民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設(shè)該網(wǎng)民是否購買這五種商品相互獨(dú)立.
(1)求該網(wǎng)民至少購買4種商品的概率;
(2)用隨機(jī)變量表示該網(wǎng)民購買商品的種數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,且滿足(2a﹣c)cosB=bcosC
(1)求角B的大;
(2)若b= ,a+c=4,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)
在平面直角坐標(biāo)系中,已知橢圓: 的離心率,直線過橢圓的右焦點(diǎn),且交橢圓于, 兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),連結(jié),過點(diǎn)作垂直于軸的直線,設(shè)直線與直線交于點(diǎn),試探索當(dāng)變化時(shí),是否存在一條定直線,使得點(diǎn)恒在直線上?若存在,請(qǐng)求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)底數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;
(3)已知,若函數(shù)對(duì)任意都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為直角的扇形OAB中,分別以O(shè)A,OB為直徑作兩個(gè)半圓,在扇形OAB內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角△ABC中,∠BCA=90°,CA=CB=1,P為AB邊上的點(diǎn)且 =λ ,若 ≥ ,則λ的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)﹣b有兩個(gè)零點(diǎn),則a的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com