【題目】如圖,在四棱錐S﹣ABCD中,SA⊥底面ABCD,底面ABCD是平行四邊形,E是線段SD上一點(diǎn).
(1)若E是SD的中點(diǎn),求證:SB∥平面ACE;
(2)若SA=AB=AD=2,SC=2,且DEDS,求二面角S﹣AC﹣E的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)由題意連結(jié)BD,交AC于點(diǎn)O,連結(jié)OE,可證OE∥SB,SB∥平面ACE得證;
(2)建立空間直角坐標(biāo)系,求得平面SAC與平面ACE的法向量,代入公式求二面角的余弦值即可.
(1)證明:連結(jié)BD,交AC于點(diǎn)O,連結(jié)OE,
∵底面ABCD是平行四邊形,∴O是BD的中點(diǎn),
∵E是SD的中點(diǎn),∴OE∥SB,
∵SB平面ACE,OE平面ACE,
∴SB∥平面ACE.
(2)∵SA⊥底面ABCD,AC平面ABCD,
∴SA⊥AC,
在Rt△SAC中,SA=2,SC=2,
∴AC=2,
∵AB=AD=2,
∴△ABC,△ACD都是等邊三角形,
∴BD=2,
以O為原點(diǎn),OD為x軸,OA為y軸,過O作AS的平行線為z軸,建立空間直角坐標(biāo)系,
O(0,0,0),D(,0,0),A(0,1,0),S(0,1,2),
(,1,2),(,),
(),
∵BD⊥平面SAC,取平面SAC的一個(gè)法向量(),
設(shè)平面ACE的法向量(x,y,z),
則,取x=4,得(4,0,),
設(shè)二面角S﹣AC﹣E的平面角為θ,
則cosθ.
∴二面角S﹣AC﹣E的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處切線與直線垂直.
(1)試比較與的大小,并說明理由;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點(diǎn)是正方形對(duì)角線的交點(diǎn),且.
(1)證明:平面;
(2)若側(cè)面與底面垂直,求五面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解公司800名員工對(duì)公司食堂組建的需求程度,將這些員工編號(hào)為1,2,3,…,800,對(duì)這些員工使用系統(tǒng)抽樣的方法等距抽取100人征求意見,有下述三個(gè)結(jié)論:①若25號(hào)員工被抽到,則105號(hào)員工也會(huì)被抽到;②若32號(hào)員工被抽到,則1到100號(hào)的員工中被抽取了10人;③若88號(hào)員工未被抽到,則10號(hào)員工一定未被抽到;其中正確的結(jié)論個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|+2|x﹣m|
(1)當(dāng)m=2時(shí),求f(x)≤9的解集;
(2)若f(x)≤2的解集不是空集,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線:與圓: ()相交于, , ,四個(gè)點(diǎn),
(1)求的取值范圍;
(2)設(shè)四邊形的面積為,當(dāng)最大時(shí),求直線與直線的交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;
(Ⅱ)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com