【題目】已知函數(shù)f(x)=﹣ x2+(a﹣1)x+lnx.
(1)若a>﹣1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)= x2+(1﹣2a)x+f(x)有且只有兩個零點,求實數(shù)a的取值范圍.

【答案】
(1)解:f(x)=﹣ x2+(a﹣1)x+lnx,(x>0),

f′(x)=﹣ax+(a﹣1)+ = ,

0<﹣a<1即﹣1<a<0時,﹣ >1,

令f′(x)>0,解得:x>﹣ 或0<x<1,

令f′(x)<0,解得:1<x<﹣ ,

∴f(x)在(0,1)遞增,在(1,﹣ )遞減,在(﹣ ,+∞)遞增,

﹣a≤0即a≥0時,﹣ax﹣1<0,

令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,

∴f(x)在(0,1)遞增,在(1,+∞)遞減;


(2)解:若g(x)= x2+(1﹣2a)x+f(x)有且只有兩個零點,

即lnx=ax有且只有兩個零點,

即h(x)=lnx,y=ax有且只有2個交點,

由h(x)=lnx的圖象與直線y=ax有兩交點

可知;a>0,

當(dāng)直線與h(x)=lnx相切時,設(shè)切點(x0,lnx0

∵h(yuǎn)′(x)= ,

∴根據(jù)切線的斜率與導(dǎo)數(shù)值的關(guān)系可知: =a,即x0=

代入直線方程可得;ln =1,解得:a= ,

所以函數(shù)h(x)=lnx的圖象與直線y=ax有兩交點,

則0<a<


【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)由h(x)=lnx的圖象與直線y=ax有兩交點可知;a>0,再根據(jù)導(dǎo)數(shù)求出切線的斜率,即可求出有2個交點時a的范圍.
【考點精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市教育局委托調(diào)查機(jī)構(gòu)對本市中小學(xué)學(xué)校使用“微課掌上通”滿意度情況進(jìn)行調(diào)查.隨機(jī)選擇小學(xué)和中學(xué)各50所學(xué)校進(jìn)行調(diào)查,調(diào)查情況如表:

評分等級

☆☆

☆☆☆

☆☆☆☆

☆☆☆☆☆

小學(xué)

2

7

9

20

12

中學(xué)

3

9

18

12

8

(備注:“☆”表示評分等級的星級,例如“☆☆☆”表示3星級.)
(1)從評分等級為5星級的學(xué)校中隨機(jī)選取兩所學(xué)校,求恰有一所學(xué)校是中學(xué)的概率;
(2)規(guī)定:評分等級在4星級以上(含4星)為滿意,其它星級為不滿意.完成下列2×2列聯(lián)表并幫助判斷:能否在犯錯誤的概率不超過0.05的前提下認(rèn)為使用是否滿意與學(xué)校類別有關(guān)系?

學(xué)校類型

滿意

不滿意

總計

小學(xué)

50

中學(xué)

50

總計

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

(Ⅰ)若圓x2y2=4在伸縮變換 (λ>0)的作用下變成一個焦點在x軸上,且離心率為的橢圓,求λ的值;

(Ⅱ)在極坐標(biāo)系中,已知點A(2,0),點P在曲線Cρ上運(yùn)動,求P、A兩點間的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于集合A={x|x=m2﹣n2 , m∈Z,n∈Z},因為16=52﹣32 , 所以16∈A,研究下列問題:
(1)1,2,3,4,5,6六個數(shù)中,哪些屬于A,哪些不屬于A,為什么?
(2)討論集合B={2,4,6,8,…,2n,…}中有哪些元素屬于A,試給出一個普通的結(jié)論,不必證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1+2sinxcosx+2cos2x.
(1)求f(x)遞增區(qū)間;
(2)求f(x)的對稱軸方程;
(3)求f(x)的最大值并寫出取最大值時自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l: (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2.
(1)若點M的直角坐標(biāo)為(2, ),直線l與曲線C交于A、B兩點,求|MA|+|MB|的值;
(2)設(shè)曲線C經(jīng)過伸縮變換 得到曲線C′,求曲線C′的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的分?jǐn)?shù)三角形,稱為“萊布尼茨三角形”.這個三角形的規(guī)律是:各行中的每一個數(shù),都等于后面一行中與它相鄰的兩個數(shù)之和(例如第4行第2個數(shù) 等于第5行中的第2個數(shù) 與第3個數(shù) 之和).則
在“萊布尼茨三角形”中,第10行從左到右第2個數(shù)到第8個數(shù)中各數(shù)的倒數(shù)之和為(

A.5010
B.5020
C.10120
D.10130

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中共有15個除了顏色外完全相同的球,其中有10個白球,5個紅球.從袋中任取2個球,所取的2個球中恰有1個白球,1個紅球的概率為(
A.
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=4 ﹣x的值域為

查看答案和解析>>

同步練習(xí)冊答案