【題目】已知函數(shù),曲線在點處的切線方程為.
(1)求, 的值;
(2)當時, 恒成立,求實數(shù)的取值范圍.
【答案】(1) , ;(2) 實數(shù)的取值范圍是.
【解析】試題分析:(1)求出,由, 可求得, 的值;(2)恒成立等價于. 設,利用導數(shù)研究函數(shù)的單調(diào)性,討論可證明證明當時, 恒成立,當時,不合題意,從而可得結果.
試題解析:(1)函的定義域為,
,
把代入方程中,得,
即,∴,
又因為,∴,
故.
(2)由(1)可知,當時,
恒成立等價于.
設,
則
,
由于,
當時, ,則在上單調(diào)遞增,
恒成立.
當時,設,則.
則為上單調(diào)遞增函數(shù),
又由.
即在上存在,使得,
當時, 單調(diào)遞減,
當時, 單調(diào)遞增;
則,不合題意,舍去.
綜上所述,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】金磚國家領導人第九次會晤于2017年9月3日至5日在中國福建廈門市舉行,為了在金磚峰會期間為來到廈門的外國嘉賓提供服務,培訓部對兩千余名志愿者進行了集中培訓,為了檢驗培訓效果,現(xiàn)培訓部從兩千余名志愿者中隨機抽取100名,按年齡(單位:歲)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者前去機場參加接待外賓禮儀測試,則應從第3,4,5組中各抽取多少名志愿者?
(2)在(1)的條件下,若在第3,4組的志愿者中隨機抽取2名志愿者介紹接待外賓經(jīng)驗感受,求第4組至少有1名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點.
(1)求橢圓方程;
(2)過點的直線與橢圓交于兩個不同的點,求線段的垂直平分線在軸截距的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為和,離心率是,直線過點交橢圓于, 兩點,當直線過點時, 的周長為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)當直線繞點運動時,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把正整數(shù)按下表排列:
(1)求200在表中的位置(在第幾行第幾列);
(2)求表中主對角線上的數(shù)列:1、3、7、13、21、…的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直角坐標系中動點,參數(shù),在以原點為極點、軸正半軸為極軸所建立的極坐標系中,動點在曲線: 上.
(1)求點的軌跡的普通方程和曲線的直角坐標方程;
(2)若動點的軌跡和曲線有兩個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形, ,點在線段上,且, 為的中點.
(Ⅰ)若,求證:平面平面;
(Ⅱ)若平面平面, 為等邊三角形,且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 過點,且離心率為.過點的直線與橢圓交于, 兩點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若點為橢圓的右頂點,探究: 是否為定值,若是,求出該定值,若不是,請說明理由.(其中, , 分別是直線、的斜率)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓,直線.
(1)以原點為極點, 軸正半軸為極軸建立極坐標系,求圓和直線的交點的極坐標;
(2)若點為圓和直線交點的中點,且直線的參數(shù)方程為 (為參數(shù)),求, 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com