4.已知四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PA與底面垂直,且PA=AB,若該四棱錐的側(cè)面積為16+4$\sqrt{2}$,則該四棱錐外接球的表面積為(1056-576$\sqrt{2}$)π.

分析 利用四棱錐的側(cè)面積為16+4$\sqrt{2}$,求出AB,可得四棱錐外接球的直徑為$\sqrt{3}a$=12$\sqrt{6}$-8$\sqrt{3}$,半徑為6$\sqrt{6}$-4$\sqrt{3}$,即可求出四棱錐外接球的表面積.

解答 解:設(shè)PA=AB=a,則
∵四棱錐的側(cè)面積為16+4$\sqrt{2}$,
∴2×$\frac{1}{2}{a}^{2}$+2×$\frac{1}{2}×a×\sqrt{2}a$=16+4$\sqrt{2}$,
∴a=12$\sqrt{2}$-8,
∴四棱錐外接球的直徑為$\sqrt{3}a$=12$\sqrt{6}$-8$\sqrt{3}$,半徑為6$\sqrt{6}$-4$\sqrt{3}$,
∴四棱錐外接球的表面積為4π(6$\sqrt{6}$-4$\sqrt{3}$)2=(1056-576$\sqrt{2}$)π.
故答案為:(1056-576$\sqrt{2}$)π.

點(diǎn)評(píng) 本題考查四棱錐外接球的表面積,求出四棱錐外接球的直徑是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若f(x)是定義域?yàn)閇-1,0)∪(0,1]的奇函數(shù),且當(dāng)0<x≤1時(shí),f(x)=1-x,則不等式f(x)<f(-x)+1的解集為($\frac{1}{2}$,1]∪[-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a2+a-2=3,則a+a-1=$±\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=|2x-3|-|x|的單調(diào)遞減區(qū)間是(-∞,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知log8a+log4b2=5,且log8b+log4a2=7.求log4$\sqrt{ab}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若(1-2x)2016=a0+a1x+…+a2016x2016(x∈R),則$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$的值為( 。
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1,x≥0}\\{3x+1,x<0}\end{array}\right.$,若f(2-3a)>f(a),則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.(-$\frac{1}{2}$,+∞)D.(-∞,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.△ABC中,|$\overrightarrow{AB}$|=3,|$\overrightarrow{BC}$|=2,$\overrightarrow{AB}•\overrightarrow{BC}$=$\overrightarrow{BC}•\overrightarrow{CA}$,則$\overrightarrow{CA}•\overrightarrow{AB}$的值為( 。
A.7B.-7C.11D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=2log2x(x>0)的反函數(shù)為$y={2}^{\frac{x}{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案