【題目】已知數(shù)列{an}和{bn}滿足,a1=2,b1=1,且對任意正整數(shù)n恒滿足2an+1=4an+2bn+1,2bn+1=2an+4bn﹣1.
(1)求證:{an+bn}為等比數(shù)列,{an﹣bn}為等差列;
(2)求證(n>1).
【答案】(1)證明見解析;(2)證明見解析
【解析】
(1),.兩式相加相減分別可得:,.又,,化簡即可證明結(jié)論.
(2)由(1)可得:.利用數(shù)學(xué)歸納法,通過放縮即可證明結(jié)論.
證明:(1),.
兩式相加相減分別可得:,.
,.
又,,
為等比數(shù)列,首項(xiàng)為3,公比為3.
為等差列,首項(xiàng)為1,公差為1.
(2)由(1)可得:.
利用數(shù)學(xué)歸納法先證明:.
時,,成立.
假設(shè)時成立,即.
時,
,
因此左邊不等式成立.
利用數(shù)學(xué)歸納法先證明:.
時,,成立.
假設(shè)時,.
則時,
,
右邊不等式成立.
綜上可得:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的左右焦點(diǎn),點(diǎn)在橢圓上,且.
(1)求橢圓的方程;
(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得等差數(shù)列?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對心肺疾病入院的50人進(jìn)行問卷調(diào)查,得到了如下的列聯(lián)表:
(1)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(2)在上述抽取的6人中選2人,求恰好有1名女性的概率;
(3)為了研究心肺疾病是否與性別有關(guān),請計算出統(tǒng)計量,你有多大把握認(rèn)為心肺疾病與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)的定義域?yàn)?/span>,且存在非零常數(shù),對任意 , 恒成立,則稱為線周期函數(shù), 為的線周期.
(1)下列函數(shù)①,②,③(其中表示不超過x的最大整數(shù)),是線周期函數(shù)的是 (直接填寫序號);
(2)若為線周期函數(shù),其線周期為,求證: 為周期函數(shù);
(3)若為線周期函數(shù),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在多面體中,底面是梯形,四邊形是正方形,,,,,
(1)求證:平面平面;
(2)設(shè)為線段上一點(diǎn),,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高二年級學(xué)生中隨機(jī)抽取100名學(xué)生,將他們某次考試的數(shù)學(xué)成績(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示),
(1)求分?jǐn)?shù)在[70,80)中的人數(shù);
(2)若用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5 人,該5 人中成績在[40,50)的有幾人?
(3)在(2)中抽取的5人中,隨機(jī)選取2 人,求分?jǐn)?shù)在[40,50)和[50,60)各1 人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓的左,右焦點(diǎn),過作直線 (與軸不重合)交橢圓于, 兩點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實(shí)數(shù)a,b滿足ab>0且a≠b,由a、b、、按一定順序構(gòu)成的數(shù)列( 。
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,邊a、b、c分別是角A、B、C的對邊,且滿足bcosC=(3a-c)cosB
(1)求cosB
(2)若△ABC的面積為4,b=4,求△ABC的周長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com