(本題滿分18分)
各項均為正數(shù)的數(shù)列的前項和為,滿足.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,數(shù)列滿足,數(shù)列的前項和為,求;
(3)若數(shù)列,甲同學利用第(2)問中的,試圖確定的值是否可以等于2011?為此,他設(shè)計了一個程序(如圖),但乙同學認為這個程序如果被執(zhí)行會是一個“死循環(huán)”(即程序會永遠循環(huán)下去,而無法結(jié)束),你是否同意乙同學的觀點?請說明理由.
科目:高中數(shù)學 來源: 題型:
(本題滿分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)
若數(shù)列滿足:是常數(shù)),則稱數(shù)列為二階線性遞推數(shù)列,且定義方程為數(shù)列的特征方程,方程的根稱為特征根; 數(shù)列的通項公式均可用特征根求得:
①若方程有兩相異實根,則數(shù)列通項可以寫成,(其中是待定常數(shù));
②若方程有兩相同實根,則數(shù)列通項可以寫成,(其中是待定常數(shù));
再利用可求得,進而求得.
根據(jù)上述結(jié)論求下列問題:
(1)當,()時,求數(shù)列的通項公式;
(2)當,()時,求數(shù)列的通項公式;
(3)當,()時,記,若能被數(shù)整除,求所有滿足條件的正整數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆上海市盧灣區(qū)高三上學期期末數(shù)學理卷 題型:解答題
(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
已知負數(shù)和正數(shù),且對任意的正整數(shù)n,當≥0時, 有[, ]=
[, ];當<0時, 有[, ]= [, ].
(1)求證數(shù)列{}是等比數(shù)列;
(2)若,求證;
(3)是否存在,使得數(shù)列為常數(shù)數(shù)列?請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省濟寧市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;
(Ⅲ)過A、B分別作拋物C的切線且交于點M,求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海市青浦區(qū)高三上學期期終學習質(zhì)量調(diào)研測試數(shù)學試卷 題型:解答題
(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設(shè),對于項數(shù)為的有窮數(shù)列,令為中最大值,稱數(shù)列為的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.
考查自然數(shù)的所有排列,將每種排列都視為一個有窮數(shù)列.
(1)若,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列;
(2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由.
(3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列的個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學文 題型:解答題
(本題滿分18分,其中第1小題6分,第2小題6分,第3小題6分)
已知數(shù)列的首項為1,前項和為,且滿足,.數(shù)列滿足.
(1) 求數(shù)列的通項公式;
(2) 當時,試比較與的大小,并說明理由;
(3) 試判斷:當時,向量是否可能恰為直線的方向向量?請說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com