(本小題14分)

已知橢圓的一個(gè)頂點(diǎn)為,離心率

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線l與橢圓交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為

     求△AOB面積的最大值.

 

【答案】

解:(Ⅰ)設(shè),依題意得 ,

         解得.

         所以橢圓的方程為. …………….…….…………….……. …….6分

   (Ⅱ)①當(dāng) . …………….…….…………….…………….7分   

   ②當(dāng)軸不垂直時(shí),設(shè)直線的方程為,

    由已知   …….…………….…………….… 8分

    代入橢圓方程,整理得

    于是    …….…………….…………….…9分

    當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí) …….………12分

    ③當(dāng)           …….…………….…………….………13分

    綜上:,

    面積取最大值  …….…………….………14分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題

(本小題14分)已知函數(shù).
(1)若,點(diǎn)P為曲線上的一個(gè)動(dòng)點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時(shí)的切線方程;
(2)若函數(shù)上為單調(diào)增函數(shù),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆陜西省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)已知二次函數(shù)滿足:,且該函數(shù)的最小值為1.

⑴ 求此二次函數(shù)的解析式;

⑵ 若函數(shù)的定義域?yàn)?img src="http://thumb2018.1010pic.com//pic6/res/gzsx/web/STSource/2013111922523809266031/SYS201311192253311566112238_ST.files/image004.png">= .(其中). 問(wèn)是否存在這樣的兩個(gè)實(shí)數(shù),使得函數(shù)的值域也為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省協(xié)作體高三第三次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)已知函數(shù) 

(Ⅰ)若且函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)求證:,…….

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期第一次調(diào)研考試數(shù)學(xué)試卷(實(shí)驗(yàn)班) 題型:解答題

(本小題14分)已知函數(shù)f(x)=,x∈[1,+∞

(1)當(dāng)a=時(shí),求函數(shù)f(x)的最小值

(2)若對(duì)任意x∈[1,+∞,f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍

(3)求f(x)的最小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年福建省四地六校高二下學(xué)期第一次月考數(shù)學(xué)理卷 題型:解答題

(本小題14分)

已知函數(shù).

(Ⅰ)若,求曲線處切線的斜率;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)設(shè),若對(duì)任意,均存在,使得,求的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案