已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設,若在上至少存在一點,使得成立,求的范圍.
(Ⅰ)在,上單調(diào)遞減,在上單調(diào)遞增;(Ⅱ)的取值范圍為.
解析試題分析:(Ⅰ)對求導來判斷單調(diào)區(qū)間;(Ⅱ)在上至少存在一點,使得成立,即不等式在上有解,原不等式整理得:(),轉(zhuǎn)化為求在的最小值問題.
試題解析:(Ⅰ)解:.,解得:在,上單調(diào)遞減,在上單調(diào)遞增;
(Ⅱ),在上至少存在一點,使得成立,即:不等式在有解,也即:()有解,記,則,,令,,,,在單調(diào)遞增,,即在上恒成立,因此,在上,在上,即在單調(diào)遞減,在單調(diào)遞增,,所以,的取值范圍為.
方法二:令,則,
即,
①當時,在上為增函數(shù),在上為減函數(shù),由題意可知,,;
②當時,在上為增函數(shù),在,上為減函數(shù),,由題意可知,;
③當時,在上為增函數(shù),在,上為減函數(shù),,由題意可知
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(為常數(shù)).
(1)當時,求的單調(diào)遞減區(qū)間;
(2)若,且對任意的,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
⑴ 求函數(shù)的單調(diào)區(qū)間;
⑵ 如果對于任意的,總成立,求實數(shù)的取值范圍;
⑶ 是否存在正實數(shù),使得:當時,不等式恒成立?請給出結(jié)論并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是實數(shù),函數(shù),和,分別是的導函數(shù),若在區(qū)間上恒成立,則稱和在區(qū)間上單調(diào)性一致.
(Ⅰ)設,若函數(shù)和在區(qū)間上單調(diào)性一致,求實數(shù)的取值范圍;
(Ⅱ)設且,若函數(shù)和在以為端點的開區(qū)間上單調(diào)性一致,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),(其中,),且函數(shù)的圖象在點處的切線與函數(shù)的圖象在點處的切線重合.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若,滿足,求實數(shù)的取值范圍;
(Ⅲ)若,試探究與的大小,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)設函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間()上存在一點,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)若,試求函數(shù)的單調(diào)區(qū)間;
(2)過坐標原點作曲線的切線,證明:切點的橫坐標為1;
(3)令,若函數(shù)在區(qū)間(0,1]上是減函數(shù),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com