A. | $\frac{7}{2}$ | B. | 7 | C. | -1或7 | D. | -$\frac{1}{2}$或$\frac{7}{2}$ |
分析 設(shè)直線l1的方程為2x+2y-2m=0,利用直線l1與直線l2:2x+2y-3=0的距離為$\sqrt{2}$,可得$\frac{|2m-3|}{\sqrt{4+4}}$=$\sqrt{2}$,即可求出m的值.
解答 解:設(shè)直線l1的方程為2x+2y-2m=0,
∵直線l1與直線l2:2x+2y-3=0的距離為$\sqrt{2}$,
∴$\frac{|2m-3|}{\sqrt{4+4}}$=$\sqrt{2}$,
∴m=-$\frac{1}{2}$或$\frac{7}{2}$,
故選D.
點評 本題考查兩條平行線間距離的計算,考查學(xué)生的計算能力,比較基礎(chǔ).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -2或0 | C. | 1或-3 | D. | 0或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [9,+∞) | B. | (-∞,9] | C. | (9,+∞) | D. | (-∞,9) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $2+\frac{{\sqrt{15}}}{5}$ | C. | $4+\frac{{\sqrt{15}}}{5}$ | D. | $2\sqrt{2}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 13 | C. | 15 | D. | 16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com