已知雙曲線(xiàn)-=1的右焦點(diǎn)為(,0),則該雙曲線(xiàn)的漸近線(xiàn)方程為_(kāi)_______.
2x±3y=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知平面區(qū)域恰好被面積最小的圓C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋,則圓C的方程為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:+=1(a>b>0)的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線(xiàn)相交于A,B兩點(diǎn),連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,則C的離心率為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)F1,F2是雙曲線(xiàn)C:-=1(a>0,b>0)的兩個(gè)焦點(diǎn).若在C上存在一點(diǎn)P,使PF1⊥PF2,且∠PF1F2=30°,則C的離心率為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知0<θ<,則雙曲線(xiàn)C1:=1與C2:=1的( ).
A.實(shí)軸長(zhǎng)相等 B.虛軸長(zhǎng)相等
C.離心率相等 D.焦距相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)F是雙曲線(xiàn)-=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線(xiàn)的右頂點(diǎn),過(guò)點(diǎn)F且垂直于x軸的直線(xiàn)與雙曲線(xiàn)交于A,B兩點(diǎn),若△ABE是銳角三角形,則該雙曲線(xiàn)的離心率e的取值范圍是( ).
A.(1,2) B.(,2) C.(,2) D.(2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
過(guò)拋物線(xiàn)E:x2=2py(p>0)的焦點(diǎn)F作斜率分別為k1,k2的兩條不同直線(xiàn)l1,l2,且k1+k2=2,l1與E相交于點(diǎn)A,B,l2與E相交于點(diǎn)C,D,以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在直線(xiàn)記為l.
(1)若k1>0,k2>0,證明:·<2p2;
(2)若點(diǎn)M到直線(xiàn)l的距離的最小值為,求拋物線(xiàn)E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:+=1的右焦點(diǎn)為F,拋物線(xiàn)y2=4x的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,P為拋物線(xiàn)上一點(diǎn),PA⊥l,A為垂足.如果直線(xiàn)AF的傾斜角為120°,那么|PF|=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,離心率e=,
過(guò)左焦點(diǎn)F1作x軸的垂線(xiàn)交橢圓于A,A′兩點(diǎn),|AA′|=4.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取垂直于x軸的直線(xiàn)與橢圓相交于不同的兩點(diǎn)P,P′,過(guò)P,P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.若PQ⊥P′Q,求圓Q的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com