分析 令t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),則-$\sqrt{2}$≤t≤$\sqrt{2}$,sinxcosx=$\frac{{t}^{2}-1}{2}$,所以f(x)=$\frac{{t}^{2}-1}{2}$+t=$\frac{1}{2}$(t+1)2-1,從而求函數(shù)的值域.
解答 解:令t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
則-$\sqrt{2}$≤t≤$\sqrt{2}$,t2=1+2sinxcosx,
∴sinxcosx=$\frac{{t}^{2}-1}{2}$,
∴f(x)=sinxcosx+sinx+cosx
=$\frac{{t}^{2}-1}{2}$+t=$\frac{1}{2}$(t+1)2-1,
∵-$\sqrt{2}$≤t≤$\sqrt{2}$,
∴-1≤(t+1)2-1≤$\frac{1}{2}$+$\sqrt{2}$;
即函數(shù)f(x)=sinxcosx+sinx+cosx的值域?yàn)閇-1,$\frac{1}{2}$+$\sqrt{2}$].
故答案為[-1,$\frac{1}{2}$+$\sqrt{2}$].
點(diǎn)評(píng) 本題考查了換元法與配方法求函數(shù)的值域,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\sqrt{7}$ | C. | 1+$\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com