分析 由題意利用兩個向量的數(shù)量積的定義求得$\overrightarrow{a}$•$\overrightarrow$的值,再根據(jù)|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{{(\overrightarrow{a}-\overrightarrow)}^{2}}$,計算求得結(jié)果.
解答 解:由題意可得$\overrightarrow{a}$•$\overrightarrow$=$\sqrt{3}$×2×cos$\frac{5π}{6}$=-3,
∴|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{{(\overrightarrow{a}-\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{+\overrightarrow}^{2}}$=$\sqrt{3+6+4}$=$\sqrt{13}$,
故答案為:$\sqrt{13}$.
點評 本題主要考查兩個向量的數(shù)量積的定義,求向量的模的方法,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
經(jīng)濟損失4000元以下 | 經(jīng)濟損失4000元以上 | 合計 | |
捐款超過500元 | 30 | ||
捐款低于500元 | 6 | ||
合計 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若|$\overrightarrow{a}$|=0,則$\overrightarrow{a}$=0 | B. | 若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$ | ||
C. | 若$\overrightarrow{a}$與$\overrightarrow$是平行向量,則|$\overrightarrow{a}$|=|$\overrightarrow$| | D. | 若$\overrightarrow{a}$=$\overrightarrow{0}$,則-$\overrightarrow{a}$=$\overrightarrow{0}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com