心理學(xué)研究表明,學(xué)生在課堂上各時段的接受能力不同.上課開始時,學(xué)生的興趣高昂,接受能力漸強(qiáng),隨后有一段不太長的時間,學(xué)生的接受能力保持較理想的狀態(tài);漸漸地學(xué)生的注意力開始分散,接受能力漸弱并趨于穩(wěn)定.設(shè)上課開始x分鐘時,學(xué)生的接受能力為f(x)(f(x)值越大,表示接受能力越強(qiáng)),f(x)與x的函數(shù)關(guān)系為:
f(x)=
-0.1x2+2.6x+44,0<x≤10
60,10<x≤15
-3x+105,15<x≤25
30,25<x≤40

(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多少時間?
(2)試比較開講后5分鐘、20分鐘、35分鐘,學(xué)生的接受能力的大。
(3)若一個數(shù)學(xué)難題,需要56的接受能力(即f(x)≥56)以及12分鐘時間,老師能否及時在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講述完這個難題?
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)求學(xué)生的接受能力最強(qiáng)其實(shí)就是要求分段函數(shù)的最大值,方法是分別求出各段的最大值取其最大即可;
(2)比較5分鐘、20分鐘、35分鐘學(xué)生的接受能力大小,方法是把x=5代入第一段函數(shù)中,而x=20要代入到第三段函數(shù)中,x=35代入第四段函數(shù),比較大小即可
(3)在每一段上解不等式f(x)≥56,求出滿足條件的x,從而得到接受能力56及以上的時間,然后與12進(jìn)行比較即可.
解答: 解:(1)由題意可知:0<x≤10
f(x)=-0.1(x-13)2+60.9
所以當(dāng)x=10時,f(x)的最大值是60,…(2分)
又10<x≤15,f(x)=60              …(3分)
所以開講后10分鐘,學(xué)生的接受能力最強(qiáng),并能維持5分鐘.…(4分)
(2)由題意可知:f(5)=54.5,f(20)=45,f(35)=30 …(5分)
所以開講后5分鐘、20分鐘、35分鐘的學(xué)生的接受能力從大小依次是
開講后5分鐘、20分鐘、35分鐘的接受能力;…(6分)
(3)由題意可知:
當(dāng)0<x≤10,f(x)=-0.1(x-13)2+60.9≥56
解得:6≤x≤10                 …(7分)
當(dāng)10<x≤15時,f(x)=60>56,滿足要求; …(8分)
當(dāng)15<x≤25時,-3x+105≥56
解得:15<x≤16
1
3
               …(9分)
因此接受能力56及以上的時間是10
1
3
分鐘小于12分鐘.
所以老師不能在所需的接受能力和時間狀態(tài)下講述完這個難題.…(10分)
點(diǎn)評:本題主要考查了函數(shù)模型的選擇與應(yīng)用,此題學(xué)生容易出錯,原因是學(xué)生把分段函數(shù)定義理解不清,自變量取值不同,函數(shù)解析式不同是分段函數(shù)最顯著的特點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在一場壘球比賽中,其中本壘與游擊手的初始位置間的距離為1,通常情況下,球速是游擊手跑速的4倍.
(1)若與連結(jié)本壘及游擊手的直線成α角(0°<α<90°)的方向把球擊出,角α滿足什么條件下時,游擊手能接到球?并判斷當(dāng)α=15°時,游擊手有機(jī)會接到球嗎?
(2)試求游擊手能接到球的概率.(參考數(shù)據(jù)
15
=3.88,sin14.5°=0.25).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程6x-3×2x-2×3x+6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9-x-2×31-x=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過點(diǎn)M(2,0)的動直線l與C相交于A,B兩點(diǎn).過A,B分別作C的切線交于點(diǎn)Q,當(dāng)AF與x軸垂直時,直線l的斜率為-2.
(1)求拋物線C的方程;
(2)當(dāng)△AFB和△QFB的面積相等時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,f(x)=
x
x-a
,g(x)=
xex
x-a
,求曲線y=f(x)與y=g(x)在x=0處的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a≥
1
2
,f(x)=-a2x2+ax+c.
(1)證明對任意x∈[0,1],f(x)≤1的充要條件是c≤
3
4

(2)已知關(guān)于x的二次方程f(x)=0有兩個實(shí)根α、β,證明:|α|≤1且|β|≤1的充要條件是:c≤a2-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,Sn=4an+Sn-1-an-1(n≥2,且n∈N*
(1)證明數(shù)列{an}為等比數(shù)列;
(2)若對?n∈N*,不等式an+α>Sn恒成立,求實(shí)數(shù)α的最小值;
(3)若cn=tn[n(lg3+lgt)+lgan+1](t>0),且數(shù)列{cn}中的每一項總小于它后面的項,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:sin100°(1+
3
tan10°)=
 

查看答案和解析>>

同步練習(xí)冊答案