精英家教網 > 高中數學 > 題目詳情
已知H(-3,0),點Py軸上,點Qx軸的正半軸上,點M在直線PQ上,且滿足
⑴當點Py軸上移動時,求點M的軌跡C;
⑵過點T(-1,0)作直線l與軌跡C交于A、B兩點,若在x軸上存在一點E(x0,0),使得ABE是等邊三角形,求x0的值.
見解析
解(1)設點M的坐標為(x,y),則由
,得。所以y2=4x 由點Qx軸的正半軸上,得x>0,所以,動點M的軌跡C是以(0,0)為頂點,以(1,0)為焦點的拋物線,除去原點.
(2)設直線lyk(x+1),其中k≠0代入y2=4x,得k2x2+2(k2-2)xk2=0     ①
Ax1,y1),B(x2,y2),則x1,x2是方程①的兩個實數根,由韋達定理得
所以,線段AB的中點坐標為,線段AB的垂直平分線方程為

 ,所以,點E的坐標為。因為ABE為正三角形,所以,點E到直線AB的距離等于
   
所以,
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題




查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知雙曲線的一條準線與拋物線y2=-6x的準線重合,則該雙曲線的離心率是            

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分15分)設橢圓的左焦點為F,上頂點為A,直線AF的傾斜角為(1)求橢圓的離心率;(2)設過點A且與AF垂直的直線與橢圓右準線的交點為B,過A、B、F三點的圓M恰好與直線相切,求橢圓的方程及圓M的方程

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)橢圓的左、右焦點分別為F1F2,過F1的直線l與橢圓交于A、B兩點.(Ⅰ)如果點A在圓c為橢圓的半焦距)上,且|F1A|=c,求橢圓的離心率;(Ⅱ)若函數的圖象,無論m為何值時恒過定點(b,a),求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓的一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,且離心率且過橢圓右焦點的直線與橢圓C交于兩點.
(1)求橢圓C的方程;
(2)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.
(3)若AB是橢圓C經過原點O的弦, MNAB,求證:為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若在曲線f(x,y)=0上兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
|x|+1=
4-y2

對應的曲線中存在“自公切線”的有______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點,且有,則點的軌跡是(    )
A.橢圓B.雙曲線C.線段D.兩射線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

O為坐標原點,點,點軸正半軸上移動,表示的長,則△ABC中兩邊長的比值的最大值為
A.B.C.D.

查看答案和解析>>

同步練習冊答案